33 resultados para Platelet-Derived Growth Factor beta

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gliomas are primary central nervous system (CNS) neoplasms that are believed to arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into two major histopathological groups: oligodendroglial and astroglial tumors. The most malignant of the astroglial tumors is glioblastoma multiforme (GBM). A great deal of genetic and epigenetic alterations have been implicated in gliomagenesis. In particular, PDGF signaling is frequently over-activated in a large number of human gliomas. In order to gain insights into the biology of gliomas, we manage to model human gliomas in mice using a somatic gene transfer approach—RCAS/TVA system. In our previous study, combined activation of AKT and RAS pathways gave rise to glioblastomas from CNS progenitors. In the present study, we demonstrate that in vivo autocrine PDGF stimulation induces oligodendrogliomas and mixed oligoastrocytomas from CNS progenitors and differentiated astrocytes respectively. In culture autocrine PDGF stimulation dedifferentiates astrocytes into progenitor-like cells and blockade of PDGF signaling reverses these phenotypic changes. Experimental disruption of cell cycle arrest pathway, such as Ink4a-Arf loss, is not required for the initiation of PDGF-induced gliomagenesis; instead, this mutation contributes to the tumor progression by enhancing tumor malignancy and shortening tumor latency. P53 deficiency does not promote the PDGF-induced gliomagenesis. In addition, 1p and 19q, often deleted in human oligodendrogliomas, remain intact in these PDGF-induced gliomas. Therefore, our studies suggest that autocrine PDGF stimulation alone may be sufficient to induce gliomagenesis. In contrast to transient stimulation in vitro, constitutive PDGF stimulation activates neither AKT nor RAS/MAPK pathways during gliomagenesis. This results in the formation of oligodendrogliomas, instead of glioblastomas. Sustained activation of the AKT pathway converts PDGF-induced oligodendrogliomas into astrocytomas. Our studies suggest that constitutive PDGF stimulation is not equivalent to transient PDGF stimulation, and that a transition between oligodendroglial and astroglial tumors in humans may be possible, depending on additional alterations. In summary, PDGF signaling plays a pivotal role in gliomagenesis in the mouse, and its hyperactivity is capable of contributing to both oligodendroglial and astroglial tumorigenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatoma-derived growth factor (HDGF) is overexpressed in lung cancer and the overexpression correlates with aggressive biological behaviors and poor clinical outcomes. We developed anti-HDGF monoclonal antibodies and tested their antitumor activity in lung cancer xenograft models. We also determined biological effects in tumors treated with the antibody alone or in combination with bevacizumab/avastin (an anti-vascular endothelial growth factor antibody) and/or gemcitabine (a chemotherapeutic agent). We found the anti-HDGF was effective to inhibit tumor growth in non-small cell lung cancer xenograft models. In the A549 model, compared with control IgG, tumor growth was substantially inhibited in animals treated with anti-HDGF antibodies, particularly HDGF-C1 (P = 0.002) and HDGF-H3 (P = 0.005). When HDGF-H3 was combined with either bevacizumab or gemcitabine, we observed enhanced tumor growth inhibition, particularly when the three agents were used together. HDGF-H3-treated tumors exhibited significant reduction of microvessel density with a pattern distinctive from the microvessel reduction pattern observed in bevacizumab-treated tumors. HDGF-H3-treated but not bevacizumab-treated tumors also showed a significant increase of apoptosis. Interestingly, many of the apoptotic cells in HDGF-H3-treated tumors are stroma cells, suggesting that the mechanism of the antitumor activity is, at least in part, through disrupting formation of tumor-stroma structures. Our results show that HDGF is a novel therapeutic target for lung cancer and can be effectively targeted by an antibody-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor beta (TGF-beta) plays a key role in cancer metastasis, signaling through the TGF-beta type I/II receptors (TbetaRI/II). We hypothesized that targeting TbetaRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-beta1-induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TbetaRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TbetaRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To determine whether transforming growth factor beta (TGF-β) receptor blockade using an oral antagonist has an effect on cardiac myocyte size in the hearts of transgenic mice with a heart failure phenotype. ^ Methods. In this pilot experimental study, cardiac tissue sections from the hearts of transgenic mice overexpressing tumor necrosis factor (MHCsTNF mice) having a phenotype of heart failure and wild-type mice, treated with an orally available TGF-β receptor antagonist were stained with wheat germ agglutinin to delineate the myocyte cell membrane and imaged using fluorescence microscopy. Using MetaVue software, the cardiac myocyte circumference was traced and the cross sectional area (CSA) of individual myocytes were measured. Measurements were repeated at the epicardial, mid-myocardial and endocardial levels to ensure adequate sampling and to minimize the effect of regional variations in myocyte size. ANOVA testing with post-hoc pairwise comparisons was done to assess any difference between the drug-treated and diluent-treated groups. ^ Results. There were no statistically significant differences in the average myocyte CSA measured at the epicardial, mid-myocardial or endocardial levels between diluent treated littermate control mice, drug treated normal mice, diluent-treated transgenic mice and drug-treated transgenic mice. There was no difference between the average pan-myocardial cross sectional area between any of the four groups mentioned above. ^ Conclusions. TGF-β receptor blockade using oral TGF-β receptor antagonist does not alter myocyte size in MHCsTNF mice that have a phenotype of heart failure. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of insulin-like growth factor binding protein 2 (IGFBP2) is associated with progression and poor survival in many types of human cancer (such as prostate, ovarian, adrenocortical, breast, colorectal carcinomas, leukemia, and high-grade gliomas). We therefore hypothesize that IGFBP2 is a key regulator of tumor progression. We tested our hypothesis in gliomas using the somatic gene transfer RCAS-tva mouse model system, which permits the introduction of specific genes into specific, cell lineages, in this case glial cells (RCAS: Replication competent avian sarcomavirus, tv-a: avian RCAS virus receptor). Mice are transgenic and harbor the tv-a receptor under the control of a glial-specific promoter and study genes are cloned into the RCAS vector for post-natal intracranial delivery. For these experiments, the study genes were IGFBP2, platelet-derived growth factor B (PDGFB), K-Ras, Akt, and IIp45 (invasion inhibitory protein 45 kDa; known to bind and block IGFBP2 activity), which were delivered separately and in combination. Our results show that PDGFB signaling leads exclusively to the formation of low-grade (WHO grade II) oligodendrogliomas. PDGFB delivered in combination with IGFBP2 results in the formation of anaplastic oligodendrogliomas (WHO grade III), which are characterized by increased cellularity, vascular proliferation, small regions of necrosis, increased mitotic activity, and increased activation of the Akt pathway. IIp45 injected in combination with PDGFB and IGFBP2 ablates IGFBP2-induced tumor progression, which results in formation of low-grade oligodendrogliomas, and an overall reduction in tumor incidence. K-Ras expression was required to form astrocytomas with either IGFBP2 or Akt, indicating the activation of two separate pathways is necessary for gliomagenesis. In ex vivo experiments, blockade of Akt by an inhibitor led to decreased viability of cells co-expressing IGFBP2 versus PDGFB expression alone. This study provides definitive evidence, for the first time, that: (1) IGFBP2 plays a role in activation of the Akt pathway, (2) IGFBP2 collaborates with K-Ras or PDGFB in the development and progression of two major types of glioma, and (3) IGFBP2-induced tumor progression can be ablated by IIp45 or by specific inhibition of the Akt pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate and direction of fibroblast locomotion is regulated by the formation of lamellipodia. In turn, lamellipodal formation is modulated in part by adhesion of that region of the cell from which the lamellipodia will extend or orginate. Cell surface $\beta$1,4-galactosyltransferase (GalTase) is one molecule that has been demonstrated to mediate cellular interactions with extracellular matrices. In the case of fibroblasts, GalTase must be associated with the actin cytoskeleton in order to mediate cellular adhesion to laminin. The object of this study was to determine how altering the quantity of GalTase capable of associating with the cytoskeleton impacts cell motility. Stably transfected cell lines were generated that have increased or decreased levels of surface GalTase relative to its cytoskeleton-binding sites. Biochemical analyses of these cells reveals that there is a limited number of sites on the cytoskeleton with which GalTase can interact. Altering the ratio of GalTase to its cytoskeleton binding sites does not affect the cells' abilities to spread, nor does it affect the localization of cytoskeletally-bound GalTase. It does, however, appear to interfere with stress fiber bundling. Cells with altered GalTase:cytoskeleton ratios change their polarity of laminin more frequently, as compared to controls. Therefore, the ectopic expression of GalTase cytoplasmic domains impairs a cell's ability to control the placement of lamellipodia. Cells were then tested for their ability to respond to a directional stimulus, a gradient of platelet-derived growth factor (PDGF). It was found that the ability of a cell to polarize in response to a gradient of PDGF is directly proportional to the quantity of GalTase associated with its cytoskeleton. Finally, the rate of unidirectional cell migration on laminin was found to be directly dependent upon surface GalTase expression and is inversely related to the ability of surface GalTase to interact with the cytoskeleton. It is therefore proposed that cytoskeletal assembly and lamellipodal formation can be regulated by the altering the ratio of cytoplasmic domains for specific matrix receptors, such as GalTase, relative to their cytoskeleton-binding sites. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two approaches were utilized to investigate the role of pp60c-src activation in growth control of model colon tumor cell lines. The first approach involved analysis of pp60c-src activity in response to growth factor treatment to determine if transient activation of the protein was associated with ligand induced mitogenic signal transduction as occurs in non-colonic cell types. Activation of pp60c-src was detected using colon tumor cell lysates after treatment with platelet derived growth factor (PDGF). Activation of pp60c-src was also detected in response to epidermal growth factor (EGF) treatment using cellular lysates and intact cells. In contrast, down-regulation of purified pp60c-src occurred after incubation with EGF-treated EGFr immune complexes in vitro suggesting additional cellular events were potentially required for the stimulatory response observed in intact cells. The results demonstrated activation of pp60c-src in colon tumor cells in response to PDGF and EGF which is consistent with the role of the protein in mitogenic signal transduction in non-colonic cell types.^ The second approach used to study the role of pp60c-src activation in colonic cell growth control focused on analysis of the role of constitutive activation of the protein, which occurs in approximately 80% of colon tumors and cell lines, in growth control. These studies involved analysis of the effects of the tyrosine kinase specific inhibitor Herbimycin A (HA) on monolayer growth and pp60c-src enzymatic activity using model colon tumor cell lines. HA induced dose-dependent growth inhibition of all colon tumor cell lines examined possessing elevated pp60c-src activity. In HT29 cells the dose-dependent growth inhibition induced by HA correlated with dose-dependent pp60c-src inactivation. Inactivation of pp60c-src was shown to be an early event in response to treatment with HA which preceded induction of HT29 colon tumor cell growth inhibition. The growth effects of HA towards the colon tumor cells examined did not appear to be associated with induction of differentiation or a cytotoxic mechanism of action as changes in morphology were not detected in treated cells and growth inhibition (and pp60c-src inactivation) were reversible upon release from treatment with the compound. The results suggested the constitutive activation of pp60c-src functioned as a proliferative signal in colon tumor cells. Correlation between pp60c-src inactivation and growth inhibition was also observed using HA chemical derivatives confirming the role of tyrosine kinase inactivation by these compounds in inhibition of mitogenic signalling. In contrast, in AS15 cells possessing specific antisense mRNA mediated inactivation of pp60c-src, HA-induced inactivation of the related pp62c-yes tyrosine kinase, which is also activated during colon tumor progression, was not associated with induction of monolayer growth inhibition. These results suggested a function for the constitutively activated pp62c-yes protein in colon tumor cell proliferation which was different from that of activated pp60c-src. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GIST) represent 80% of sarcoma arising from the GI tract. The inciting event in tumor progression is mutation of the kit or, rarely, platelet derived growth factor receptor-α (PDGFR) gene. These mutations encode ligand independent, constitutively active proteins: Kit or PDGFR. ^ These tumors are notoriously chemo and radio resistant. Historically, patients with advanced disease realized a median overall survival of 9 months. However, with modern management of GIST with imatinib mesylate (Novartis), a small molecule inhibitor of the Kit, PDGFR, and Abl tyrosine kinases, patients now realize a median overall survival greater than 30 months. However, almost half of patients present with surgically resectable GIST and the utility of imatinib in this context has not been prospectively studied. Also, therapeutic benefit of imatinib is variable from patient to patient and alternative targeted therapy is emerging as potential alternatives to imatinib. Thus, elucidating prognostic factors for patients with GIST in the imatinib-era is crucial to providing optimal care to each particular patient. Moreover, the exact mechanism of action of imatinib in GIST is not fully understood. Therefore, physicians find difficulty in accurately predicting which patient will benefit from imatinib, how to assess response to therapy, and the time at which to assess response. ^ I have hypothesized that imatinib is tolerable and clinically beneficial in the context of surgery, VEGF expression and kit non-exon 11 genotypes portend poor survival on imatinib therapy, and imatinib's mechanism of action is in part due to anti-vascular effects and inhibition of the Kit/SCF signaling axis of tumor-associated endothelial cells. ^ Results herein demonstrate that imatinib is safe and increases the duration of disease-free survival when combined with surgery. Radiographic and molecular (namely, apoptosis) changes occur within 3 days of imatinib initiation. I illustrate that non-exon 11 mutant genotypes and VEGF are poor prognostic factors for patients treated with imatinib. These findings may allow for patient stratification to emerging therapies rather than imatinib. I show that imatinib has anti-vascular effects via inducing tumor endothelial cell apoptosis perhaps by abrogation of the Kit/SCF signaling axis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The FUS1 tumor suppressor gene (TSG) has been found to be deficient in many human non-small cell lung cancer (NSCLC) tissue samples and cell lines (1,2,3). Studies have shown potent anti-tumor activity of FUS1 in animal models where FUS1 was delivered through a liposomal vector (4) and the use of FUS1 as a therapeutic agent is currently being studied in clinical human trials (5). Currently, the mechanisms of FUS1 activity are being investigated and my studies have shown that c-Abl tyrosine kinase is inhibited by the FUS1 TSG.^ Considering that many NSCLC cell lines are FUS1 deficient, my studies further identified that FUS1 deficient NSCLC cells have an activated c-Abl tyrosine kinase. C-Abl is a known proto-oncogene and while c-Abl kinase is tightly regulated in normal cells, constitutively active Abl kinase is known to contribute to the oncogenic phenotype in some types of hematopoietic cancers. My studies show that the active c-Abl kinase contributes to the oncogenicity of NSCLC cells, particularly in tumors that are deficient in FUS1, and that c-Abl may prove to be a viable target in NSCLC therapy.^ Current studies have shown that growth factor receptors play a role in NSCLC. Over-expression of the epidermal growth factor receptor (EGFR) plays a significant role in aggressiveness of NSCLC. Current late stage treatments include EFGR tyrosine kinase inhibitors or EGFR antibodies. Platelet-derived growth factor receptor (PDGFR) also has been shown to play a role in NSCLC. Of note, both growth factor receptors are known upstream activators of c-Abl kinase. My studies indicate that growth factor receptor simulation along deficiency in FUS1 expression contributes to the activation of c-Abl kinase in NSCLC cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This laboratory developed human T-cell hybridomas which constitutively secrete suppressor factors (SF) capable of inhibiting immune responses (Hybridoma 6:589 (1987). The mechanisms by which human T-cell hybridoma-derived SFs (designated 160 and 169) and Jurkat leukemic T-cell line derived SF inhibit the proliferative response to mitogen by human PBMC were investigated. The Jurkat SF had a pI of 5.2 whereas the 160 and 169 SF had pI of 5.7 and 4.7 (two peaks) and 4.7, respectively. The SF was not transforming growth factor-beta based upon neutralization and iummunoprecipitation experiments with anti-TGF-beta polyclonal antibody. Il-2 production by human PBMC cultured with Con A or OKT3 mAb in the presence of SF was found to be inhibited by greater than 80%. The proliferative responses of SF treated PBMC could not be restored by addition of exogeneous human IL-2. Inhibition of the proliferative responses could not be reversed by addition of exogenous rIL-1, rIL-2 or rIL-4 alone or in paired combinations. The expression of IL-2 receptors (TAC Ag) on Con A activated cultures time points was not affected by treatment with any SFs. Both the 160 and 169 hybridoma-derived SFs were found to arrest PHA induced cell cycle progression in G$\sb0$/G$\sb1$ phase, whereas SF from the Jurkat T-cell line arrested progression in the S phase. Pretreatment of PBMC with SF prior to the addition of mitogen, followed by washing, did not alter the proliferative response of these PBMC nor their cell cycle progression suggesting that cell activation is necessary for these SF to inhibit proliferative responses. Northern blot analysis of total mRNA from mitogen stimulated PBMC in the presence of SF, revealed a time dependent accumulation of an IL-2 specific mRNA of increased size (2.8 kB) in addition to the expected 1.0 kB mature IL-2 message. Interferon-gamma mRNA was of the appropriate size but its half-life was prolonged in SF treated cultures. IL-2 receptor and IL-1 beta mRNA expression was not altered in these cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of colonic epithelial cell proliferation and differentiation remains poorly understood due to the inability to design a model system which recapitulates these processes. Currently, properties of "differentiation" are studied in colon adenocarcinoma cell lines which can be induced to express some, but not all of the phenotypes of normal cells. In this thesis, the DiFi human colon adenocarcinoma cell line is utilized as an in vitro model system in which to study mucin production. In response to treatment with tumor necrosis factor-alpha, DiFi cells acquire some properties of mucin-producing goblet cells including altered morphology, increased reactivity to wheat germ agglutinin, and increased mucin production as determined by RNA expression as well as reactivity with the MUC-1 antibodies, HMFG-1 and SM-3. Thus, TNF-treated DiFi cells represent one of the few in vitro systems in which mucin expression can be induced.^ DiFi cells express an activated pp60$\sp{{\rm c}-src},$ as do most colon adenocarcinomas and derived cell lines, as well as an amplified epidermal growth factor (EGF) receptor. To assess potential changes in these enzymes during induction of differentiation characteristics, potential changes in the levels and activities of these enzymes were examined. For pp60$\sp{{\rm c}-src},$ no changes were observed in protein levels, specific activity of the kinase, cellular localization, or phosphorylation pattern as determined by Staphylococcus aureus V8 protease partial proteolytic mapping after induction of goblet cell-like phenotypic changes. These results suggest that pp60$\sp{{\rm c}-src}$ is regulated differentially in goblet cells than in absorptive cells, as down-modulation of pp60$\sp{{\rm c}-src}$ kinase occurs in the latter. Therefore, effects on pp60$\sp{{\rm c}-src}$ may be critical in colon regulation, and may be important in generating the various colonic epithelial cell types.^ In contrast to pp60$\sp{{\rm c}-src},$ EGF receptor tyrosine kinase activity decreased ($<$5-fold) after TNF treatment and at the time in which morphologic changes were observed. Similar decreases in tyrosine phosphorylation of EGF receptor were observed as assessed by immunoblotting with an anti-phosphotyrosine antibody. In addition, ($\sp{125}$I) -EGF cell surface binding was reduced approximately 3-fold following TNF treatment with a concomitant reduction in receptor affinity ($<$2-fold). These results suggest that modulation of EGF receptor may be important in goblet cell differentiation. In contrast, other published studies have demonstrated that increases in EGF receptor mRNA and in ($\sp{125}$I) -EGF binding accompany differentiation toward the absorptive cell phenotype. Therefore, differential regulation of both EGF receptor and pp60$\sp{{\rm c}-src}$ occur along the goblet cell and absorptive cell differentiation pathways. Thus, my results suggest that TNF-treated DiFi cells represent a unique system in which to study distinct patterns of regulation of pp60$\sp{{\rm c}-src}$ and EGF receptor in colonic cells, and to determine if increased MUC-1 expression is an early event in goblet cell differentiation. ^