8 resultados para NEGATIVELY-CHARGED PHOSPHOLIPIDS

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that liposomal amphotericin B (L-AmpB) decreased renal toxicity and maintains the antifungal activity of amphotericin B (AmpB). We have also observed that L-AmpB is predominantly associated with high density lipoproteins (HDL) as compared to Fungizone (AmpB + deoxycholate). The present experiments were designed to assess the biological relevance of transferring AmpB to HDL. We observed that AmpB was less toxic to kidney cells when associated with HDL, however AmpB toxicity was maintained when associated with LDL. To further understand how HDL-associated AmpB reduces renal cell toxicity the presence of HDL and LDL receptors in this cell line was determined. We observed that these cells expressed high and low affinity LDL receptors, but only low affinity HDL receptors. The reduced renal cell toxicity of HDL-associated AmpB may be due to its lack of interaction with renal cells because of the absence of HDL receptors. Since AmpB interacts with cholesteryl esters whose transfer among lipoproteins is regulated by Lipid transfer Protein (LTP), the role of LTP on the distribution of AmpB to HDL and LDL was next examined. We found that negatively charged liposomes significantly reduced LTP-mediated transfer of CE between HDL and LDL, independent of the presence of AmpB, while Fungizone only significantly inhibited CE transfer at one concentration tested (20$\mu$g/ml). Therefore, we believe that the decreased renal toxicity of L-AmpB is related to its predominant distribution to HDL which is regulated by the inhibition of LTP activity. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transmembrane domain orientation within some membrane proteins is dependent on membrane lipid composition. Initial orientation occurs within the translocon, but final orientation is determined after membrane insertion by interactions within the protein and between lipid headgroups and protein extramembrane domains. Positively and negatively charged amino acids in extramembrane domains represent cytoplasmic retention and membrane translocation forces, respectively, which are determinants of protein orientation. Lipids with no net charge dampen the translocation potential of negative residues working in opposition to cytoplasmic retention of positive residues, thus allowing the functional presence of negative residues in cytoplasmic domains without affecting protein topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MEF2 is a $\underline{\rm m}$yocyte-specific $\underline{\rm e}$nhancer-binding $\underline{\rm f}$actor that binds a conserved DNA sequence, CTA(A/T)$\sb4$TAG. A MEF2 binding site in the XMyoDa promoter overlaps with the TATA box and is required for muscle specific expression. To examine the potential role of MEF2 in the regulation of MyoD transcription during early development, the appearance of MEF2 binding activity in developing Xenopus embryos was analyzed with the electrophoretic mobility shift assay. Two genes were isolated from a X. Laevis stage 24 cDNA library that encode factors that bind the XMyoDa TFIID/MEF2 site. Both genes are highly homologous to each other, belong to the MADS ($\underline{\rm M}$CM1-$\underline{\rm A}$rg80-agamous-$\underline{\rm d}$eficiens-$\underline{\rm S}$RF) protein family, and most highly related to the mammalian MEF2A gene, hence they are designated as XMEF2A1 and XMEF2A2. Proteins encoded by both cDNAs form specific complexes with the MEF2 binding site and show the same binding specificity as the endogenous MEF2 binding activity. XMEF2A transcripts accumulate preferentially in developing somites after the appearance of XMyoD transcripts. XMEF2 protein begins to accumulate in somites at tailbud stages. Transcriptional activation of XMyoD promoter by XMEF2A required only the MADS box and MEF2-specific domain when XMEF2A is bound at the TATA box. However, a different downstream transactivation domain was required when XMEF2A activates transcription through binding to multiple upstream sites. These results suggest that different activation mechanisms are involved, depending on where the factor is bound. Mutations in several basic amino acid clusters in the MADS box inhibit DNA binding suggesting these amino acids are essential for DNA binding. Mutation of Thr-20 and Ser-36 to the negatively charged amino acid residue, aspartic acid, abolish DNA binding. XMEF2A activity may be regulated by phosphorylation of these amino acids. A dominant negative mutant was made by mutating one of the basic amino acid clusters and deleting the downstream transactivation domain. In vivo roles of MEF2 in the regulation of MyoD transcription were investigated by overexpression of wild type MEF2 and dominant negative mutant of XMEF2A in animal caps and assaying for the effects on the level of expression of MyoD genes. Overexpression of MEF2 activates the transcription of endogenous MyoD gene family while expression of a dominant negative mutant reduces the level of transcription of XMRF4 and myogenin genes. These results suggest that MEF2 is downstream of MyoD and Myf5 and that MEF2 is involved in maintaining and amplifying expression of MyoD and Myf5. MEF2 is upstream of MRF4 and myogenin and plays a role in activating their expression. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian constitutive photomorphogenic 1 (COP1), a p53 E3 ubiquitin ligase, is a key negative regulator for p53. DNA damage leads to the translocation of COP1 to the cytoplasm, but the underlying mechanism remains unknown. We discovered that 14-3-3σ controlled COP1 subcellular localization and protein stability. Investigation of the underlying mechanism suggested that, upon DNA damage, 14-3-3σ bound to phosphorylated COP1 at S387, resulting in COP1 translocation to the cytoplasm and cytoplasmic COP1 ubiquitination and proteasomal degradation. 14-3-3σ targeted COP1 for degradation to prevent COP1-mediated p53 degradation, p53 ubiquitination, and p53 transcription repression. COP1 expression promoted cell proliferation, cell transformation, and tumor progression, attesting to its role in cancer promotion. 14-3-3σ negatively regulated COP1 function and prevented tumor growth in cancer xenografts. COP1 protein levels were inversely correlated with 14-3-3σ protein levels in human breast and pancreatic cancer specimens. Together, these results define a novel, detailed mechanism for the posttranslational regulation of COP1 upon DNA damage and provide a mechanistic explanation of the correlation of COP1 overexpression with 14-3-3σ downregulation during tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-translational protein modifications are critical regulators of protein functions as they expand the signaling potentials of the modified proteins, leading to diverse physiological consequences. Currently, increasing evidence suggests that protein methylation is as important as other post-translational modifications in the regulation of various biological processes. This drives us to ask whether methylation is involved in the EGFR (epidermal growth factor receptor) signaling, a biological process extensively regulated by multiple post-translational modifications including phosphorylation, glycosylation and ubiquitination. We found that EGFR R1175 is methylated by a protein arginine methyltransferase named PRMT5. During EGFR activation, PRMT5-mediated R1175 methylation specifically enhances EGF-induced EGFR autophosphorylation at Y1173 residue. This novel modification crosstalk increases SHP1 recruitment to EGFR and suppresses EGFR-mediated ERK activation, resulting in inhibition of cell proliferation, migration, and invasion of EGFR-expressing cells. Based on these findings, we provide the first link between arginine methylation and tyrosine phosphorylation and identify R1175 methylation as an inhibitory modification specifically against EGFR-mediated ERK activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major goal of this work was to understand the function of anionic phospholipid in E. coli cell metabolism. One important finding from this work is the requirement of anionic phospholipid for the DnaA protein-dependent initiation of DNA replication. An rnhA mutation, which bypasses the need for the DnaA protein through induction of constitutive stable DNA replication, suppressed the growth arrest phenotype of a $pgsA$ mutant in which the synthesis of anionic phospholipid was blocked. The maintenance of plasmids dependent on an $oriC$ site for replication, and therefore DnaA protein, was also compromised under conditions of limiting anionic phospholipid synthesis. These results provide support for the involvement of anionic phospholipids in normal initiation of DNA replication at oriC in vivo by the DnaA protein. In addition, structural and functional requirements of two major anionic phospholipids, phosphatidylglycerol and cardiolipin, were examined. Introduction into cells of the ability to make phosphatidylinositol did not suppress the need for the naturally occurring phosphatidylglycerol. The requirement for phosphatidylglycerol was concluded to be more than maintenance of the proper membrane surface charge. Examination of the role of cardiolipin revealed its ability to replace the zwitterionic phospholipid, phosphatidylethanolamine, in maintaining an optimal membrane lipid organization. This work also reported the DNA sequence of the cls gene, which encodes the CL synthase responsible for the synthesis of cardiolipin. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the major anionic phospholipids predominantly found in the mitochondrial inner membrane of eukaryotic cells, cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are of great importance in many critical mitochondrial processes. Pgs1Δ cells of Saccharomyces cerevisiae lacking both PG and CL display severe mitochondrial defects. Translation of several proteins including products of four mitochondrial DNA (mtDNA) encoded genes (COX1, COX2, COX3, and COB ) and one nuclear-encoded gene (COX4) is inhibited. The molecular basis of this phenotype was analyzed using a combined biochemical, molecular and genetic approach. ^ Using a mitochondrial targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5′ and 3′ untranslated regions (UTRs), lack of mtGFP expression independent of carbon source and strain background was confirmed to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but rather caused directly by the lack of PG/CL in the mitochondrial membrane. Re-introduction of a functional PGS1 gene restored PG synthesis and expression of the above mtGFP. Deletional analysis of the 5′ UTR of COX4 mRNA revealed the presence of a 50 nt sequence as a cis-acting element inhibiting COX4 translation. Using similar constructs with HIS3 and lacZ as reporter genes, extragenic spontaneous mutations that allowed expression of His3p and β-galactosidase were isolated, which appeared to be recessive and derived from loss-of-function mutations as determined by mating analysis. Using a tetracycline repressible plasmid-borne PGS1 expression system and an in vivo mitochondrial protein translation method, the translation of mtDNA encoded COX1 and COX3 mRNAs was shown to be significantly inhibited in parallel with reduced levels of PG/CL content. Therefore, the cytoplasmic translation machinery appears to be able to sense the level of PG/CL in mitochondria and regulate COX4 translation coordinately with the mtDNA encoded subunits. ^ The essential requirement of PG and CL in mitochondrial function was further demonstrated in the study of CL synthesis by factors affecting mitochondrial biogenesis such as carbon source, growth phase or mitochondrial mutations at the level of transcription. We have also demonstrated that CL synthesis is dependent on the level of PG and INO2/INO4 regulatory genes. ^