5 resultados para Machine translating

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: HEADS UP {Health Education And Discovering Science while Unlocking Potential} aims to improve health literacy and increase student interest in health science careers by providing cutting-edge content from world-renowned researchers in the Texas Medical Center and beyond to the K-12 school community. [See PDF for complete abstract]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein's NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These remarks were first prepared by the author for the inauguration of the Marion Elizabeth Blue Endowed Professorship in Children and Families at the University of Michigan School of Social Work. They were delivered on October 5, 1999, and originally appeared as a monograph published by the University of Michigan School of Social Work in December 1999. They are reprinted here by permission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to assess the healthcare information needs of decision-makers in a local US healthcare setting in efforts to promote the translation of knowledge into action. The focus was on the perceptions and preferences of decision-makers regarding usable information in making decisions as to identify strategies to maximize the contribution of healthcare findings to policy and practice. Methods: This study utilized a qualitative data collection and analysis strategy. Data was collected via open-ended key-informant interviews from a sample of 37 public and private-sector healthcare decision-makers in the Houston/Harris County safety net. The sample was comprised of high-level decision-makers, including legislators, executive managers, service providers, and healthcare funders. Decision-makers were asked to identify the types of information, the level of collaboration with outside agencies, useful attributes of information, and the sources, formats/styles, and modes of information preferred in making important decisions and the basis for their preferences. Results: Decision-makers report acquiring information, categorizing information as usable knowledge, and selecting information for use based on the application of four cross-cutting thought processes or cognitive frameworks. In order of apparent preference, these are time orientation, followed by information seeking directionality, selection of validation processes, and centrality of credibility/reliability. In applying the frameworks, decision-makers are influenced by numerous factors associated with their perceptions of the utility of information and the importance of collaboration with outside agencies in making decisions as well as professional and organizational characteristics. Conclusion: An approach based on the elucidated cognitive framework may be valuable in identifying the reported contextual determinants of information use by decision-makers in US healthcare settings. Such an approach can facilitate active producer/user collaborations and promote the production of mutually valued, comprehensible, and usable findings leading to sustainable knowledge translation efforts long-term.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^