4 resultados para MAMMALIAN INFECTION
em DigitalCommons@The Texas Medical Center
Resumo:
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Resumo:
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Resumo:
Borrelia burgdorferi is the etiological agent of Lyme disease, the most common tick-borne disease in the United States. Although the most frequently reported symptom is arthritis, patients can also experience severe cardiac, neurologic, and dermatologic abnormalities. The identification of virulence determinants in infectious B. burgdorferi strains has been limited by their slow growth rate, poor transformability, and general lack of genetic tools. The present study demonstrates the use of transposon mutagenesis for the identification of infectivity-related factors in infectious B. burgdorferi, examines the potential role for chemotaxis in mammalian infection, and describes the development of a novel method for the analysis of recombination events at the Ids antigenic variation locus. A pool of Himar1 mutants was isolated using an infectious B. burgdorferi clone and the transposon vector pMarGent. Clones exhibiting reduced infectivity in mice possessed insertions in virulence determinants putatively involved in host survival and dissemination. These results demonstrated the feasibility of extensive transposon mutagenesis studies for the identification of additional infectivity-related factors. mcp-5 mutants were chosen for further study to determine the role of chemotaxis during infection. Animal studies indicated that mcp-5 mutants exhibited a reduced infectivity potential, and suggested a role for mcp-5 during the early stages of infection. An in vitro phenotype for an mcp-5 mutant was not detected. Genetic complementation of an mcp-5 mutant resulted in restoration of Mcp-5 expression in the complemented clone, as demonstrated by western blotting, but the organisms were not infectious in mice. We believe this result is a consequence of differences in expression between genes located on the linear chromosome and genes present on the circular plasmid used for trans-complementation. Overall, this work implicates mcp-5 as an important determinant of mammalian infectivity. Finally, the development of a computer-assisted method for the analysis of recombination events occurring at the B. burgdorferi vls antigenic variation locus has proven highly valuable for the detailed examination of vls gene conversion. The studies described here provide evidence for the importance of chemotaxis during infection in mice and demonstrate advances in both genetic and computational approaches for the further characterization of the Lyme disease spirochete. ^
Resumo:
Caenorhabditis elegans has recently been developed as a model system to study both pathogen virulence mechanisms and host defense responses. We have shown that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important Gram-positive, noscomial pathogen, Enterococcus faecalis. We have also shown evidence of oxidative stress and upregulation of stress response after exposure to the pathogen. As in mammalian systems, this work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-duox1/BLI-3 causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. This dual oxidase has previously been localized to the hypodermis, but we show that it is additionally localized to the intestine of C. elegans. To further demonstrate the protective effects of the pathogen-induced ROS production, we demonstrate that antioxidants that scavenge ROS, increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under non-pathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.^