4 resultados para Galilean covariance

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of clinical chemistry has traditionally been to evaluate acutely ill or hospitalized patients. Traditional statistical methods have serious drawbacks in that they use univariate techniques. To demonstrate alternative methodology, a multivariate analysis of covariance model was developed and applied to the data from the Cooperative Study of Sickle Cell Disease.^ The purpose of developing the model for the laboratory data from the CSSCD was to evaluate the comparability of the results from the different clinics. Several variables were incorporated into the model in order to control for possible differences among the clinics that might confound any real laboratory differences.^ Differences for LDH, alkaline phosphatase and SGOT were identified which will necessitate adjustments by clinic whenever these data are used. In addition, aberrant clinic values for LDH, creatinine and BUN were also identified.^ The use of any statistical technique including multivariate analysis without thoughtful consideration may lead to spurious conclusions that may not be corrected for some time, if ever. However, the advantages of multivariate analysis far outweigh its potential problems. If its use increases as it should, the applicability to the analysis of laboratory data in prospective patient monitoring, quality control programs, and interpretation of data from cooperative studies could well have a major impact on the health and well being of a large number of individuals. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models of DNA sequence evolution and methods for estimating evolutionary distances are needed for studying the rate and pattern of molecular evolution and for inferring the evolutionary relationships of organisms or genes. In this dissertation, several new models and methods are developed.^ The rate variation among nucleotide sites: To obtain unbiased estimates of evolutionary distances, the rate heterogeneity among nucleotide sites of a gene should be considered. Commonly, it is assumed that the substitution rate varies among sites according to a gamma distribution (gamma model) or, more generally, an invariant+gamma model which includes some invariable sites. A maximum likelihood (ML) approach was developed for estimating the shape parameter of the gamma distribution $(\alpha)$ and/or the proportion of invariable sites $(\theta).$ Computer simulation showed that (1) under the gamma model, $\alpha$ can be well estimated from 3 or 4 sequences if the sequence length is long; and (2) the distance estimate is unbiased and robust against violations of the assumptions of the invariant+gamma model.^ However, this ML method requires a huge amount of computational time and is useful only for less than 6 sequences. Therefore, I developed a fast method for estimating $\alpha,$ which is easy to implement and requires no knowledge of tree. A computer program was developed for estimating $\alpha$ and evolutionary distances, which can handle the number of sequences as large as 30.^ Evolutionary distances under the stationary, time-reversible (SR) model: The SR model is a general model of nucleotide substitution, which assumes (i) stationary nucleotide frequencies and (ii) time-reversibility. It can be extended to SRV model which allows rate variation among sites. I developed a method for estimating the distance under the SR or SRV model, as well as the variance-covariance matrix of distances. Computer simulation showed that the SR method is better than a simpler method when the sequence length $L>1,000$ bp and is robust against deviations from time-reversibility. As expected, when the rate varies among sites, the SRV method is much better than the SR method.^ The evolutionary distances under nonstationary nucleotide frequencies: The statistical properties of the paralinear and LogDet distances under nonstationary nucleotide frequencies were studied. First, I developed formulas for correcting the estimation biases of the paralinear and LogDet distances. The performances of these formulas and the formulas for sampling variances were examined by computer simulation. Second, I developed a method for estimating the variance-covariance matrix of the paralinear distance, so that statistical tests of phylogenies can be conducted when the nucleotide frequencies are nonstationary. Third, a new method for testing the molecular clock hypothesis was developed in the nonstationary case. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A non-parametric method was developed and tested to compare the partial areas under two correlated Receiver Operating Characteristic curves. Based on the theory of generalized U-statistics the mathematical formulas have been derived for computing ROC area, and the variance and covariance between the portions of two ROC curves. A practical SAS application also has been developed to facilitate the calculations. The accuracy of the non-parametric method was evaluated by comparing it to other methods. By applying our method to the data from a published ROC analysis of CT image, our results are very close to theirs. A hypothetical example was used to demonstrate the effects of two crossed ROC curves. The two ROC areas are the same. However each portion of the area between two ROC curves were found to be significantly different by the partial ROC curve analysis. For computation of ROC curves with large scales, such as a logistic regression model, we applied our method to the breast cancer study with Medicare claims data. It yielded the same ROC area computation as the SAS Logistic procedure. Our method also provides an alternative to the global summary of ROC area comparison by directly comparing the true-positive rates for two regression models and by determining the range of false-positive values where the models differ. ^