6 resultados para Event-based Model
em DigitalCommons@The Texas Medical Center
Resumo:
The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.
Resumo:
Microarray technology is a high-throughput method for genotyping and gene expression profiling. Limited sensitivity and specificity are one of the essential problems for this technology. Most of existing methods of microarray data analysis have an apparent limitation for they merely deal with the numerical part of microarray data and have made little use of gene sequence information. Because it's the gene sequences that precisely define the physical objects being measured by a microarray, it is natural to make the gene sequences an essential part of the data analysis. This dissertation focused on the development of free energy models to integrate sequence information in microarray data analysis. The models were used to characterize the mechanism of hybridization on microarrays and enhance sensitivity and specificity of microarray measurements. ^ Cross-hybridization is a major obstacle factor for the sensitivity and specificity of microarray measurements. In this dissertation, we evaluated the scope of cross-hybridization problem on short-oligo microarrays. The results showed that cross hybridization on arrays is mostly caused by oligo fragments with a run of 10 to 16 nucleotides complementary to the probes. Furthermore, a free-energy based model was proposed to quantify the amount of cross-hybridization signal on each probe. This model treats cross-hybridization as an integral effect of the interactions between a probe and various off-target oligo fragments. Using public spike-in datasets, the model showed high accuracy in predicting the cross-hybridization signals on those probes whose intended targets are absent in the sample. ^ Several prospective models were proposed to improve Positional Dependent Nearest-Neighbor (PDNN) model for better quantification of gene expression and cross-hybridization. ^ The problem addressed in this dissertation is fundamental to the microarray technology. We expect that this study will help us to understand the detailed mechanism that determines sensitivity and specificity on the microarrays. Consequently, this research will have a wide impact on how microarrays are designed and how the data are interpreted. ^
Resumo:
The growth patterns of weight from birth through the first twelve months of life among rural Taiwanese infants were investigated with the following objectives: (i) compare each of the parameters of the Count model estimated for infants who were nutritionally at risk with those for a reference population from the United States; and (ii) within the Taiwanese infants, account for the variance in the growth patterns in the first and second six months of life on the basis of selected ecological factors.^ The significance between group differences were observed in the patterns of the weight growth in both linear growth and in the timing and the direction of velocity changes. A significant decline in growth velocity was observed among Taiwanese infants at about the fourth month of life. The decline is in keeping with a recent proposal made by J. C. Waterlow regarding the timing of change in growth velocity among nutritionally at risk populations in developing countries. The growth course of a nutritionally at risk infant during the first three months is apparently protected by the nurturance of the mother and innate biological properties of the infant.^ A highly significant portion of the growth variance in the second six months of life was accounted for by exogenous factors and biological factors related to the infant. Conversely, none of the growth variance in the first six months of life was accounted for by predictor variables. The most potent determinant of growth in the second six months of life was seasonality which represents a multiple environmental event.^ The model parameters estimated from the Count model represent different aspect of physical growth; yet the correlation coefficients between parameters b and c are high (r > .80). Clearly, the biological interpretation of the model parameters requires analysis of the whole function in the specific context of a given age period. ^
Resumo:
Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.
Resumo:
This study evaluated a modified home-based model of family preservation services, the long-term community case management model, as operationalized by a private child welfare agency that serves as the last resort for hard-to-serve families with children at severe risk of out-of-home placement. The evaluation used a One-Group Pretest-Posttest design with a modified time-series design to determine if the intervention would produce a change over time in the composite score of each family's Child Well-Being Scales (CWBS). A comparison of the mean CWBS scores of the 208 families and subsets of these families at the pretest and various posttests showed a statistically significant decrease in the CWBS scores, indicating decreased risk factors. The longer the duration of services, the greater the statistically significant risk reduction. The results support the conclusion that the families who participate in empowerment-oriented community case management, with the option to extend service duration to resolve or ameliorate chronic family problems, have experienced effective strengthening in family functioning.
Resumo:
Obesity, among both children and adults, is a growing public health epidemic. One area of interest relates to how and why obesity is developing at such a rapid pace among children. Despite a broad consensus about how controlling feeding practices relate to child food consumption and obesity prevalence, much less is known about how non-controlling feeding practices, including modeling, relate to child food consumption. This study investigates how different forms of parent modeling (no modeling, simple modeling, and enthusiastic modeling) and parent adiposity relate to child food consumption, food preferences, and behaviors towards foods. Participants in this experimental study were 65 children (25 boys and 40 girls) aged 3-9 and their parents. Each parent was trained on how to perform their assigned modeling behavior towards a food identified as neutral (not liked, nor disliked) by their child during a pre-session food-rating task. Parents performed their assigned modeling behavior when cued during a ten-minute observation period with their child. Child food consumption (pieces eaten, grams eaten, and calories consumed) was measured and food behaviors (positive comments toward food and food requests) were recorded by event-based coding. After the session, parents self-reported on their height and weight, and children completed a post-session food-rating task. Results indicate that parent modeling (both simple and enthusiastic forms) did not significantly relate to child food consumption, food preferences, or food requests. However, enthusiastic modeling significantly increased the number of positive food comments made by children. Children's food consumption in response to parent modeling did not differ based on parent obesity status. The practical implications of this study are discussed, along with its strengths and limitations, and directions for future research.^