6 resultados para Enterobacterial repetitive intergenic consensus- polymerase chain reaction
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Few reports of the utilization of an accurate, cost-effective means for measuring HPV oncogene transcripts have been published. Several papers have reported the use of relative quantitation or more expensive Taqman methods. Here, we report a method of absolute quantitative real-time PCR utilizing SYBR-green fluorescence for the measurement of HPV E7 expression in cervical cytobrush specimens. RESULTS: The construction of a standard curve based on the serial dilution of an E7-containing plasmid was the key for being able to accurately compare measurements between cervical samples. The assay was highly reproducible with an overall coefficient of variation of 10.4%. CONCLUSION: The use of highly reproducible and accurate SYBR-based real-time polymerase chain reaction (PCR) assays instead of performing Taqman-type assays allows low-cost, high-throughput analysis of viral mRNA expression. The development of such assays will help in refining the current screening programs for HPV-related carcinomas.
Resumo:
Enterotoxigenic Escherichia coli (ETEC) causes significant morbidity and mortality in infants of developing countries and is the most common cause of diarrhea in travelers to these areas. Enterotoxigenic Escherichia coli infections are commonly caused by ingestion of fecally contaminated food. A timely method for the detection of ETEC in foods would be important in the prevention of this disease. A multiplex polymerase chain reaction (PCR) assay which has been successful in detecting the heat-labile and heat-stable toxins of ETEC in stool was examined to determine its utility in foods. This PCR assay, preceded by a glass matrix and chaotropic DNA extraction, was effective in detecting high numbers of ETEC in a variety of foods. Ninety percent of 121 spiked food samples yielded positive results. Samples of salsa from Guadalajara, Mexico and Houston, Texas were collected and underwent DNA extraction and PCR. All samples yielded negative results for both the heat-labile and heat-stable toxins. Samples were also subjected to oligonucleotide probe analysis and resulted in 5 samples positive for ETEC. Upon dilution testing, it was found that positive PCR results only occurred when 12,000 to 1,000,000 bacteria were present in 200 mg of food. Although the DNA extraction and PCR method has been shown to be both sensitive and specific in stool, similar results were not obtained in food samples. ^
Resumo:
Detection of multidrug-resistant tuberculosis (MDR-TB), a frequent cause of treatment failure, takes 2 or more weeks to identify by culture. RIF-resistance is a hallmark of MDR-TB, and detection of mutations in the rpoB gene of Mycobacterium tuberculosis using molecular beacon probes with real-time quantitative polymerase chain reaction (qPCR) is a novel approach that takes ≤2 days. However, qPCR identification of resistant isolates, particularly for isolates with mixed RIF-susceptible and RIF-resistant bacteria, is reader dependent and limits its clinical use. The aim of this study was to develop an objective, reader-independent method to define rpoB mutants using beacon qPCR. This would facilitate the transition from a research protocol to the clinical setting, where high-throughput methods with objective interpretation are required. For this, DNAs from 107 M. tuberculosis clinical isolates with known susceptibility to RIF by culture-based methods were obtained from 2 regions where isolates have not previously been subjected to evaluation using molecular beacon qPCR: the Texas–Mexico border and Colombia. Using coded DNA specimens, mutations within an 81-bp hot spot region of rpoB were established by qPCR with 5 beacons spanning this region. Visual and mathematical approaches were used to establish whether the qPCR cycle threshold of the experimental isolate was significantly higher (mutant) compared to a reference wild-type isolate. Visual classification of the beacon qPCR required reader training for strains with a mixture of RIF-susceptible and RIF-resistant bacteria. Only then had the visual interpretation by an experienced reader had 100% sensitivity and 94.6% specificity versus RIF-resistance by culture phenotype and 98.1% sensitivity and 100% specificity versus mutations based on DNA sequence. The mathematical approach was 98% sensitive and 94.5% specific versus culture and 96.2% sensitive and 100% specific versus DNA sequence. Our findings indicate the mathematical approach has advantages over the visual reading, in that it uses a Microsoft Excel template to eliminate reader bias or inexperience, and allows objective interpretation from high-throughput analyses even in the presence of a mixture of RIF-resistant and RIF-susceptible isolates without the need for reader training.^
Resumo:
Can the early identification of the species of staphylococcus responsible for infection by the use of Real Time PCR technology influence the approach to the treatment of these infections? ^ This study was a retrospective cohort study in which two groups of patients were compared. The first group, ‘Physician Aware’ consisted of patients in whom physicians were informed of specific staphylococcal species and antibiotic sensitivity (using RT-PCR) at the time of notification of the gram stain. The second group, ‘Physician Unaware’ consisted of patients in whom treating physicians received the same information 24–72 hours later as a result of blood culture and antibiotic sensitivity determination. ^ The approach to treatment was compared between ‘Physician Aware’ and ‘Physician Unaware’ groups for three different microbiological diagnoses—namely MRSA, MSSA and no-SA (or coagulase negative Staphylococcus). ^ For a diagnosis of MRSA, the mean time interval to the initiation of Vancomycin therapy was 1.08 hours in the ‘Physician Aware’ group as compared to 5.84 hours in the ‘Physician Unaware’ group (p=0.34). ^ For a diagnosis of MSSA, the mean time interval to the initiation of specific anti-MSSA therapy with Nafcillin was 5.18 hours in the ‘Physician Aware’ group as compared to 49.8 hours in the ‘Physician Unaware’ group (p=0.007). Also, for the same diagnosis, the mean duration of empiric therapy in the ‘Physician Aware’ group was 19.68 hours as compared to 80.75 hours in the ‘Physician Unaware’ group (p=0.003) ^ For a diagnosis of no-SA or coagulase negative staphylococcus, the mean duration of empiric therapy was 35.65 hours in the ‘Physician Aware’ group as compared to 44.38 hours in the ‘Physician Unaware’ group (p=0.07). However, when treatment was considered a categorical variable and after exclusion of all cases where anti-MRS therapy was used for unrelated conditions, only 20 of 72 cases in the ‘Physician Aware’ group received treatment as compared to 48 of 106 cases in the ‘Physician Unaware’ group. ^ Conclusions. Earlier diagnosis of MRSA may not alter final treatment outcomes. However, earlier identification may lead to the earlier institution of measures to limit the spread of infection. The early diagnosis of MSSA infection, does lead to treatment with specific antibiotic therapy at an earlier stage of treatment. Also, the duration of empiric therapy is greatly reduced by early diagnosis. The early diagnosis of coagulase negative staphylococcal infection leads to a lower rate of unnecessary treatment for these infections as they are commonly considered contaminants. ^
New methods for quantification and analysis of quantitative real-time polymerase chain reaction data
Resumo:
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^
Resumo:
Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^