15 resultados para DNA Fragmentation
em DigitalCommons@The Texas Medical Center
Resumo:
The role of oxidative stress and apoptosis has recently been recognized as an important determinant in the development of a variety of diseases known to man. The oncogene BCL-2 is known to regulate sensitivity to induction of apoptosis and appears to function in an antioxidant pathway by regulating glutathione. We have investigated various steps in the oxidative stress cascade to determine possible sites of action for BCL-2. The fluorescent probes H2DCFDA, dihydroethidium and cis-parinaric acid were used to quantitate generation of peroxides, superoxide and lipid peroxidation, respectively. While each of these agents was able to detect substantial increases in oxidative stress following exposure of cells to ionizing radiation, there was no significant difference between cells expressing high or low levels of BCL-2. Investigation of mitochondrial dysfunction during apoptosis revealed a possible site of bcl-2 intervention, but, analysis of kinetic events occurring during apoptosis suggested that the observed effect is not in the direct apoptotic effector pathway. When glutathione was studied, localization to the nucleus was observed in cells overexpressing BCL-2 that did not occur in cells lacking BCL-2. Additionally, nuclear accumulation of glutathione was sufficient to block granzyme b-mediated nuclear DNA fragmentation, poly (ADP-ribose) polymerase cleavage and caspase activity suggesting that nuclear accumulation of glutathione via a bcl-2 dependent process is functionally relevant to suppression of apoptosis. Thus, a model system emerges where BCL-2 is able to regulate a cell's ability to prevent apoptosis by modifying the cell's antioxidant systems at the organelle level to compensate for oxidative stresses placed upon it. ^
Resumo:
Phosphatidylserine (PS) is not only one of the structural components of the plasma membrane, it also plays an important role in blood coagulation, and cell-cell interactions during aging and apoptosis.^ Here we studied some alterations that occur in membrane phosphatidylserine asymmetry during erythroid differentiation-associated apoptosis and erythrocyte aging and characterized some aspects in the regulation of PS asymmetry.^ Erythroleukemia cells, frequently used to study erythroid development, undergo apoptosis when induced to differentiate along the erythroid lineage. In the case of K562 cells induced to differentiate with hemin, this event is characterized by DNA fragmentation that correlates with downregulation of the survival protein BCL-xL and ultimately the result is cell death. We showed here that reorientation of PS from the inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase are also events observed upon hemin treatment. We observed that constitutive expression of BCL-2 did not inhibit the alterations caused by hemin in membrane lipid asymmetry and only slightly prevented hemin-induced DNA fragmentation. On the other hand, BCL-2 effectively inhibited actinomycin D and staurosporine-induced DNA fragmentation and the appearance of PS at the outer leaflet of these cells. z.VAD.fmk, a widely used caspases inhibitor, blocked DNA fragmentation induced by both hemin and actinomycin D but only inhibited PS externalization in cells treated with actinomycin D.^ These results showed that PS externalization occurs during differentiation-related apoptosis. Unlike the pharmacologically-induced event, however, hemin-induced PS redistribution seems to be regulated by a mechanism independent of BCL-2 and caspases.^ Membrane PS is externalized not only during apoptosis but also during red blood cell senescence. To study this event, we artificially induced cellular aging by in vitro storage or vesiculation in the presence of the amphipathic lipid dilauroylphosphatidylcholine. These cells were monitored for age-dependent changes in cell density by Percoll gradient centrifugation and assessed for alterations in membrane lipid asymmetry and their ability to be cleared in vivo. These experiments demonstrated a progressive increase in red cell density upon vesiculation and in vitro aging. The clearance rate of cells obtained after vesiculation, was biphasic in nature, showing a very rapid component together with a second component consistent with the clearance rates of control populations. Quantitation of PS in the outer leaflet of red cells revealed that membrane redistribution of PS occurred upon in vitro storage and vesiculation. Inhibition of the aminophospholipid translocase with the sulfhydryl-oxidant reagent pyridyldithioethylamine resulted in higher PS externalization and enhanced clearance of vesiculated RBC.^ These observations not only suggest that vesiculation may be the mechanism responsible for some of the characteristic changes in cell density and PS asymmetry that occur upon cell aging, but also confirm the role of PS in the recognition and clearance of senescent cells. ^
Resumo:
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by the accumulation of terminally differentiated, mature B cells that do not progress beyond the G1 stage of cell cycle, suggesting that these cells possess intrinsic defects in apoptosis. Treatment relies heavily on chemotherapy (primarily nucleoside analogs and glucocorticoids) that may initially be effective in patients, but ultimately give rise to refractory, untreatable disease. The purpose of this study was to determine whether key components of the apoptotic machinery were intact in CLL lymphocytes, especially in patients refractory to therapy. ^ Activation of proteases has been shown to be at the core of the apoptotic pathway and this work demonstrates that protease activation is required for glucocorticoid and nucleoside analog-induced apoptosis in CLL cells. Inhibitors of serine proteases as well as caspase inhibitors blocked induced DNA fragmentation, and a peptide inhibitor of the nuclear scaffold (NS) protease completely suppressed both induced and spontaneous apoptosis. However, the NS protease inhibitor actually promoted several pro-apoptotic events, such as caspase activation, exposure of surface phosphatidylserine, and loss of mitochondrial membrane potential. These results suggested that the NS protease may interact with the apoptotic program in CLL cells at two separate points. ^ In order to further investigate the role of the NS protease in CLL, patient isolates were treated with proteasome inhibitors because of previous results suggesting that the ISIS protease might be a β subunit of the proteasome. Proteasome inhibitors induced massive DNA fragmentation in every patient tested, even in those resistant to the effects of glucocorticoid and nucleoside analogs in vitro. Several other features of apoptosis were also promoted by the proteasome inhibitor, including mitochondrial alterations such as release of cytochrome c and drops in mitochondrial membrane potential. Proteasome inhibitor-induced apoptosis was associated with inhibition of NFκB, a proteasome-regulated transcription factor that has been implicated in the suppression of apoptosis in a number of systems. The NS protease inhibitor also caused a decrease in active NFκB, suggesting that the proapoptotic effects of this agent might be due to depletion of NFκB. ^ Given these findings, the role of NFκB, in conferring survival in CLL was investigated. Glucocorticoid hormone treatment was shown to cause decreases in the activity of the transcription factor, while phorbol dibutyrate, which blocks glucocorticoid-induced DNA fragmentation, was capable of upregulating NFκB. Compellingly, introduction of an undegradable form of the constitutive NFκB inhibitor, IκB, caused DNA fragmentation in several patient isolates, some of which were resistant to glucocorticoid in vitro. Transcription of anti-apoptotic proteins by NFκB was postulated to be responsible for its effects on survival, but Bcl-2 levels did not fluctuate with glucocorticoid or proteasome inhibitor treatment. ^ The in vitro values generated from these studies were organized into a database containing numbers for over 250 patients. Correlation of relevant clinical parameters revealed that levels of spontaneous apoptosis in vitro differ significantly between Rai stages. Importantly, in vitro resistance to nucleoside analogs or glucocorticoids predicted resistance to chemotherapy in vivo, and inability to achieve remission. ^
Resumo:
Chronic inflammation leading to pulmonary fibrosis develops in response to environmental pollutants, radiotherapy, or certain cancer chemotherapeutic agents. Studies have shown that several cell types accumulate during the inflammatory process, but little information is known about what actually triggers and stimulates persistent inflammation culminating in fibrosis. As a first step in defining the events that precipitate inflammation in the lung, the biological mechanism(s) mediating apoptosis and cellular targets must be identified. The purpose of this study was to determine the molecular mechanism(s) of bleomycin-induced apoptosis in the lung using mice deficient in genes that we hypothesized to play a key role in apoptosis. Intratracheal administration of bleomycin led to caspase-mediated DNA fragmentation characteristic of apoptosis. The effects of bleomycin were associated with translocation of p53 from the cytosol to the nucleus only in alveolar macrophages that had been exposed to the drug in vivo, suggesting that the lung microenvironment regulated p53 activation. Experiments with a thiol antioxidant (N-acetylcysteine) in vivo and nitric oxide donors in vitro confirmed that reactive oxygen species were required for p53 activation. A specific role for NO was demonstrated in experiments with iNOS−/− macrophages, which failed to demonstrate nuclear p53 localization after in vivo bleomycin exposure. Strikingly, rates of bleomycin-induced apoptosis were at least two-fold higher in iNOS−/− and p53−/− C57BL/6 mice compared to wild-type controls. Laser Scanning Cytometry (LSC) analysis revealed that bleomycin exposure resulted in a 2-fold induction in Fas and FasL expression in wild-type mice but not iNOS−/− or p53−/− mice. Experiments using gld mice confirmed that the Fas/FasL pathway was the primary mechanism of bleomycin-induced apoptosis in the lung. LSC-mediated analysis indicated that bleomycin exposure resulted in a 2-fold induction in Bax expression in iNOS−/− and P53−/− mice but not wild-type mice. Furthermore, LSC analysis revealed that bleomycin exposure induced a 3-fold increase in thrombospondin expression in wild-type mice. However, thrombospondin was not expressed in either the iNOS−/− or p53−/− mice, implicating a thrombospondin-mediated apoptotic cell clearance mechanism in the lung. Together, these results demonstrate that iNOS and p53 positively regulate apoptosis via the Fas/FasL pathway and mediate a novel apoptosis-suppressing pathway in the lung. ^
Resumo:
Cancer is a result of defects in the coordination of cell proliferation and programmed cell death. The extent of cell death is physiologically controlled by the activation of a programmed suicide pathway that results in a morphologically recognizable form of death termed apoptosis. Inducing apoptosis in tumor cells by gene therapy provides a potentially effective means to treat human cancers. The p84N5 is a novel nuclear death domain containing protein that has been shown to bind an amino terminal domain of retinoblastoma tumor suppressor gene product (pRb). Expression of N5 can induce apoptosis that is dependent upon its intact death domain and is inhibited by pRb. In many human cancer cells the functions of pRb are either lost through gene mutation or inactivated by different mechanisms. N5 based gene therapy may induce cell death preferentially in tumor cells relative to normal cells. We have demonstrated that N5 gene therapy is less toxic to normal cells than to tumor cells. To test the possibility that N5 could be used in gene therapy of cancer, we have generated a recombinant adenovirus engineered to express N5 and test the effects of viral infection on growth and tumorigenicity of human cancer cells. Adenovirus N5 infection significantly reduced the proliferation and tumorigenicity of breast, ovarian, and osteosarcoma tumor cell lines. Reduced proliferation and tumorigenicity were mediated by an induction of apoptosis as indicated by DNA fragmentation in infected cells. We also test the potential utility of N5 for gene therapy of pancreatic carcinoma that typically respond poorly to conventional treatment. Adenoviral mediated N5 gene transfer inhibits the growth of pancreatic cancer cell lines in vitro. N5 gene transfer also reduces the growth and metastasis of human pancreatic adenocarcinoma in subcutaneous and orthotopic mouse model. Interestingly, the pancreatic adenocarcinoma cells are more sensitive to N5 than they are to p53, suggesting that N5 gene therapy may be effective in tumors resistant to p53. We also test the possibilities of the use of N5 and p53 together on the inhibition of pancreatic cancer cell growth in vitro and vivo. Simultaneous use of N5 and RbΔCDK has been found to exert a greater extent on the inhibition of pancreatic cancer cell growth in vitro and in vivo. ^
Resumo:
Prostatic carcinoma is the most prevalent cancer detected in men. Bortezomib is the first proteasome inhibitor to undergo clinical trials for several forms of cancer. Although we know this class of agent preferentially kills cancer cells, our knowledge of proteasome inhibition mechanisms of induced death is far from complete. We investigated the effects of bortezomib on the LNCaP-Pro5 (Pro5) and PC-3-Pro4 (Pro4) human prostatic adenocarcinoma cells lines. We showed a reduction in proliferation and an increase in DNA fragmentation, caspase 3 activity, and cell surface phosphatidyl serine exposure. The bortezomib-treated tumors from both cell lines were dramatically reduced, and apoptosis was induced. There was also a reduction in proliferation in the treated tumors from both cells lines. We looked at changes in the levels of the proangiogenic factors VEGF, IL-8 and bFGF in vitro and in vivo. Although there was a reduction in the levels of VEGF produced by the Pro5 cell line and tumor due to bortezomib, no similar observations were made for the other angiogenic factors or in the Pro4 cells. We investigated the effects of bortezomib on p53 in the Pro5 cell line. Bortezomib induced strong stabilization of p53. It did not promote phosphorylation on serines 15 and 24 and p53 remained bound to its inhibitor, mdm2. Nonetheless, confocal microscopy revealed that bortezomib stimulated p53 translocation to the nucleus and enhanced p53 DNA binding, accumulation of p53-dependant transcripts, and activation of a p53-responsive reporter gene. Furthermore, stable transfectants of LNCaP-Pro5 expressing the p53 inhibitor, HPV-E6, displayed reduced bortezomib-induced p53 activation and cell death. Our data shows bortezomib to induce antitumor effects in the human Pro4 and Pro5 prostatic adenocarcinoma cell lines by the direct induction of apoptosis. The drug also causes a reduction in cell proliferation and mean vessel density while modulating the secretion of proangiogenic factors. Although we show that proteasome inhibition stimulates p53 activation via a novel mechanism in Pro5 cells, it is also toxic to p53 null cells as is seen in the Pro4 line. ^
Resumo:
Oligodendrogliomas are primary neoplasms of the central nervous system (CNS). One of the most common and characteristic chromosomal abnormalities observed in oligodendroglioma is allelic loss of 1p (Reifenberger et al., 1994; Bello et al., 1995). Since 1p loss has been reported for both well-differentiated and anaplastic oligodendroglioma, it is believed to occur early in tumor development (Bello et al., 1995). This allelic loss also has clinical significance, for oligodendroglioma patients with 1p loss generally respond significantly better to combination chemotherapy and have longer average survival than do oligodendroglioma patients without 1p loss (Cairncross et al., 1998). To date, no genes on 1p have been implicated as essential to the development or treatment response of oligodendroglioma. In order to localize and/or identify a gene involved in oligodendroglioma development, I tested 170 oligodendrogliomas for deletions of 1p and tested 26 tumors for differential expression of genes in the region of 1p36. Evidence obtained from these methods implicated two genes, SHREW1 and the gene encoding DNA fragmentation factor beta (DFFB). The function for the SHREW1 locus is currently not well known, but preliminary data suggests that it a novel member of adherens junctions. The DFFB gene is an enhancer for apoptosis. Thus, both SHREW1 and DFFB may be candidates for an oligodendroglioma tumor suppressor. Mutational analysis of both genes did not uncover any mutations. Future studies will evaluate other mechanisms that may be responsible for inactivation of these genes in oligodendrogliomas. ^
Resumo:
Bortezomib (VELCADE™, formerly known as PS-341) is a selective and potent inhibitor of the proteasome that was recently FDA-approved for the treatment of multiple myeloma. Despite its success in multiple myeloma and progression into clinical trials for other malignancies, bortezomib's exact mechanism of action remains undefined. The major objective of this study was to evaluate the anticancer activity of this drug using in vitro and in vivo pancreatic cancer models and determine whether bortezomib-induced apoptosis occurs via induction of endoplasmic reticular (ER) stress. The investigation revealed that bortezomib inhibited tumor cell proliferation via abrogation of cdk activity and induced apoptosis in pancreatic cancer cell lines. I hypothesized that bortezomib-induced apoptosis was triggered by a large accumulation ubiquitin-conjugated proteins that resulted in ER stress. My data demonstrated that bortezomib induced a unique type of ER stress in that it inhibited PKR-like ER kinase (PERK) and subsequent phosphorylation of eukaryotic initiation factor 2α (eif2α), a key event in translational suppression. The combined effects of proteasome inhibition and the failure to attenuate translation resulted in an accumulation of aggregated proteins (proteotoxicity), JNK activation, cytochrome c release, caspase-3 activation, and DNA fragmentation. Bortezomib also enhanced apoptosis induced by other agents that stimulated the unfolded protein response (UPR), demonstrating that translational suppression is a critical cytoprotective mechanism during ER stress. Tumor cells attempt to survive bortezomib-induced ER stress by sequestering aggregated proteins into large structures, termed aggresomes. Since histone deacetylase 6 (HDAC6) is essential for aggresome formation, tumor cells may be sensitized to bortezomib-induced apoptosis by blocking HDAC function. My results demonstrated that HDAC inhibitors disrupted aggresome formation and synergized with bortezomib to induce apoptosis in pancreatic cancer or multiple myeloma cells in vitro and in orthotopic pancreatic tumors in vivo. Taken together, my data establish a mechanistic link between bortezomib-induced aggresome formation, ER stress, and apoptosis and identify a novel therapeutic strategy for the treatment of pancreatic cancer and other hematologic and solid malignancies. ^
Resumo:
Targeting the proteasome with the sole FDA approved proteasome inhibitor (PI), bortezomib, has been fruitful in specific cancers. Its success has generated an interest in next-generation PIs that might have a therapeutic advantage in cancers, such as leukemia, where bortezomib monotherapy was less effective. This study focuses on a novel, clinically relevant PI, NPI-0052. Experiments show that NPI-0052 targets chymotrypsin- and caspase-like activities more potently than the trypsin-like activity in leukemia cells. NPI-0052 induced apoptosis, as determined by caspase-3 activation and DNA fragmentation. Using caspase inhibitors and caspase-8 (I9.2) or FADD (I2.1) deficient cells revealed that caspase-8 was essential for NPI-0052-induced apoptosis. NPI-0052 killed cells via a caspase-8-tBid-mitochondrial pathway, relying on caspase-8, whereas bortezomib relies on several caspases. NPI-0052 increased reactive oxygen species (ROS) levels, which contributed towards cytotoxicity since an antioxidant conferred protection. To improve the clinical efficacy of PIs, NPI-0052 was combined with epigenetic anti-cancer agents, histone deacetylase inhibitors (HDACi). NPI-0052 with MS-275 or vorinostat (FDA approved HDACi), synergistically induced apoptosis more effectively than an HDACi/bortezomib regimen in Jurkat cells. Caspase-8 and ROS contributed towards NPI-0052/HDACi cytotoxicity and caspase-8 mediated superoxide production by NPI-0052 or NPI-0052/HDACi. The proximal targets of these agents: proteasome activity and histone acetylation were examined to determine if they contributed towards synergistic effects. HDACi targeted proteasomal β subunits and corresponding catalytic activities responsible for degrading proteins. Immunoblotting showed increases in histone-H3 expression and its acetylation with NPI-0052 or NPI-0052/HDACi in Jurkat and primary cells. Importantly, the hyper-acetylation by NPI-0052 was not detected with bortezomib, suggesting that this effect may be unique to NPI-0052. An antioxidant attenuated histone-H3 expression and acetylation induced by NPI-0052 alone or with HDACi. Furthermore, the hyper-acetylation by NPI-0052 relied on caspase-8. These novel results show that a PI is eliciting classical epigenetic alterations, demonstrated by hyper-acetylation of histone-H3. This alteration was oxidant and caspase-8 dependent. Overall, results reveal that caspase-8 mediates many effects induced by NPI-0052. Data show overlapping activities by NPI-0052 and HDACi which are contributing, along with caspase-8 activation and oxidative stress, to cytotoxic interactions in leukemia cells, reinforcing the potential clinical utility of combining these two compounds. ^
Resumo:
Studies have demonstrated a variable response to ozone among individuals and animal species and strains. For instance, C57BL/6J mice have a greater inflammatory response to ozone exposure than C3H/HeJ mice. In these studies, I utilized these strain differences in an effort to derive a mechanistic explanation to the variable strain sensitivity to ozone exposure. Therefore, alveolar macrophages (AM) from C57BL/6J and C3H/HeJ mice were exposed in vitro to hydrogen peroxide ($\rm H\sb2O\sb2$), heat and acetyl ceramide or in vivo to ozone. Necrosis and DNA fragmentation in macrophages from the two murine strains were determined to assess cytotoxicity following these treatments. In addition, synthesis and expression of the stress proteins, stress protein 72 (SP72) and heme oxygenase (HO-1), were examined following treatments. The in vitro experiments were conducted to eliminate the possibility of in vivo confounders (i.e., differences in breathing rates in the two strains) and thus directly implicate some inherent difference between cells from the two murine strains. $\rm H\sb2O\sb2$ and heat caused greater cytotoxicity in AM from C57BL/6J than C3H/HeJ mice and DNA fragmentation was a particularly sensitive indicator of cell injury. Similarly, AM from C57BL/6J mice were more sensitive to ozone exposure than cells from C3H/HeJ mice. Exposure to either 1 or 0.4 ppm ozone caused greater cytotoxicity in macrophages from C57BL/6J mice compared to macrophages from C3H/HeJ mice. The increased sensitivity of AM to injury was associated with decreased synthesis and expression of stress proteins. AM from C57BL/6J mice synthesized and expressed significantly less stress proteins in response to heat and ozone than AM from C3H/HeJ mice. Heat treatment resulted in greater synthesis and expression of SP72. In addition, macrophages from C57BL/6J mice expressed lower amounts of HO-1 than macrophages from C3H/HeJ mice following 0.4 ppm ozone exposure. Therefore, AM from C57BL/6J mice are more susceptible to oxidative injury than AM from C3H/HeJ mice which might be due to differential expression of stress proteins in these cells. ^
Resumo:
Histone deacetylase inhibitors (HDACi) are anti-cancer drugs that primarily act upon acetylation of histones, however they also increase levels of intracellular reactive oxygen species (ROS). We hypothesized that agents that cause oxidative stress might enhance the efficacy of HDACi. To test this hypothesis, we treated acute lymphocytic leukemia cells (ALL) with HDACi and adaphostin (ROS generating agent). The combination of two different HDACi (vorinostat or entinostat) with adaphostin synergistically induced apoptosis in ALL. This synergistic effect was blocked when cells were pre-treated with the caspase-9 inhibitor, LEHD. In addition, we showed that loss of the mitochondrial membrane potential is the earliest event observed starting at 12 h. Following this event, we observed increased levels of superoxide at 16 h, and ultimately caspase-3 activation. Pre-treatment with the antioxidant N-acetylcysteine (NAC) blocked ROS generation and reversed the loss of mitochondrial membrane potential for both combinations. Interestingly, DNA fragmentation and caspase-3 activity was only blocked by NAC in cells treated with vorinostat-adaphostin; but not with entinostat-adaphostin. These results suggest that different redox mechanisms are involved in the induction of ROS-mediated apoptosis. To further understand these events, we studied the role of the antioxidants glutathione (GSH) and thioredoxin (Trx). We found that the combination of entinostat-adaphostin induced acetylation of the antioxidant thioredoxin (Trx) and decreased intracellular levels of GSH. However, no effect on Trx activity was observed in either combination. In addition, pre-treatment with GSH ethyl ester, a soluble form of GSH, did not block DNA fragmentation. Together these results suggested that GSH and Trx are not major players in the induction of oxidative stress. Array data examining the expression of genes involved in oxidative stress demonstrated a differential regulation between cells treated with vorinostat-adaphostin and entinostat-adaphostin. Some of the genes differentially expressed between the combinations include aldehyde oxidase 1, glutathione peroxidase-5, -6, peroxiredoxin 6 and myeloperoxidase. Taken together, these experimental results indicate that the synergistic activity of two different HDACi with adaphostin is mediated by distinct redox mechanisms in ALL cells. Understanding the mechanism involved in these combinations will advance scientific knowledge of how the action of HDACi could be augmented in leukemia models. Moreover, this information could be used for the development of effective clinical trials combining HDACi with other anticancer agents.
Resumo:
We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^
Resumo:
Previous studies from our lab have shown distinctive patterns of expression of bcl-2 gene family members in human nonmelanoma skin cancer (NMSC). To further evaluate the significance of these observations and to study the effects of cell death deregulation during skin carcinogenesis, we generated a transgenic mouse model (HK1.bcl-2) using the human keratin 1 promoter to target the expression of a human bcl-2 minigene to the epidermis. Transgenic protein expression was confirmed in all the layers of the epidermis except the stratum corneum using immunohistochemistry. Multifocal epidermal hyperplasia, without associated hyperkeratosis, was observed in newborn HK1.bcl-2 mice. Immunofluorescence staining using monoclonal antibodies specific for a variety of differentiation markers revealed aberrant expression of keratin 6 (K6) in the transgenic epidermis. Epidermal proliferative indexes, assessed by anti-BrdUrd immunofluorescence staining, were similar in control and transgenic newborn mice, but suprabasal proliferating cells were seen within the hyperplastic areas of the transgenic mouse skin. Spontaneous apoptotic indices of the epidermis were similar in both control and HK1.bcl-2 transgenic newborn mice, however, after UV-B irradiation, the number of "sunburn cells" was significantly higher in the control compared to the HK1.bcl-2 transgenic animals.^ Adult HK1.bcl-2 and control littermate mice were used in UV-B and chemical carcinogenesis protocols including DMBA + TPA. UV-B irradiated control and HK1.bcl-2 mice had comparable incidence of tumors than the controls, but the mean latency period was significantly shorter in the HK1.bcl-2 transgenic. Both control and transgenic animals included in chemical carcinogenesis protocols required application of both the initiating (DMBA) and promoting (TPA) agents to develop tumors. The frequency, number, and latency of tumor formation was similar in both groups of animals, however, HK1.bcl-2 mice exhibited a rate of conversion from benign papilloma to carcinoma 2.5 times greater than controls.^ Similar carcinogenesis experiments were performed using newborn mice. HK1.bcl-2 mice treated with UV-B plus TPA have a three fold greater incidence of tumor formation compared to controls littermates. HK1.bcl-2 transgenic animals also exhibited a shorter latency for papilloma formation when treated with DMBA plus TPA.^ HK1.bcl-2/v-Ha-ras double transgenic mice shared phenotypic features of both HK1.v-Ha-ras and HK1.bcl-2 transgenic mice, and exhibited focal areas of augmented hyperplasia. These double transgenic mice were susceptible to tumor formation by treatment with TPA alone.^ Cultures of primary keratinocytes were established from control, HK1.bcl-2, HK1.Ha-ras, and HK1.bcl-2/v-Ha-ras newborn mice. Cell viability was determined after exposure of the cells to UV-B irradiation, DMBA, TPA, or TGF-$\beta$1. Internucleosomal DNA fragmentation ("ladders") and morphological cellular changes compatible with apoptotic cell death were observed after the application of all these agents. HK1.bcl-2 keratinocytes were resistant to cell death induction by all of these agents except TGF-$\beta$1. HK1.Ha-ras cells had a higher spontaneous rate of cell death which could be compensated by co-expression of bcl-2.^ These findings suggest that bcl-2 dependent cell death suppression may be an important component of multistep skin carcinogenesis. ^
Resumo:
The mechanisms involved in the development of pulmonary silicosis have not been well defined, however most current evidence implicates a central role for alveolar macrophages in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in alveolar macrophage (AM). The overall goal of this study was to determine the mechanism of silica-induced apoptosis of AM. Human AM were treated with fibrogenic, poorly fibrogenic and nonfibrogenic model particulates, such as, silica, amorphous silica and titanium dioxide, respectively (equal surface area). Treatment with silica resulted in apoptosis in human AM as observed by morphology, DNA fragmentation and Cell Death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitors, polyinosinic acid (Poly I), fucoidan and high density lipoprotein (HDL), prior to silica treatment. Pretreatment with Poly I and fucoidan resulted in significant inhibition of silica-induced apoptosis suggesting that silica-induced AM apoptosis is mediated via the SR. Further, we examined the involvement of interleukin converting enzyme (ICE) family of proteases in silica-mediated apoptosis. Silica activated ICE, Ich-1L, cpp32 beta and cleavage of PARP. Taken together, these results suggested that (1) fibrogenic particulates, such as, silica caused apoptosis of alveolar macrophages, (2) this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis, (3) silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, and (4) silica-induced apoptosis involves the activation of the ICE family of proteases. An understanding of the molecular events involved in fibrogenic particulate-induced apoptosis may provide a useful insight into the mechanism involved in particulate-induced fibrosis. ^
Resumo:
The promyelocytic leukemia protein PML is a growth suppressor essential for induction of apoptosis by diverse apoptotic stimuli. The mechanism by which PML regulates cell death remains unclear. In this study we found that ectopic expression of PML potentiates cell death in the TNFα-resistant tumor line U2OS and significantly sensitized these cells to apoptosis induced by TNFα in a p53-independent manner. Our study demonstrated that both PML and PML/TNFα-induced cell death are associated with DNA fragmentation, activation of caspase-3, -7, -8, and degradation of DFF/ICAD. Furthermore, we found that PML-induced and PML/TNFα-induced cell death could be blocked by the caspase-8 inhibitors crmA and c-FLIP, but not by Bcl-2, the inhibitor of mitochondria-mediated apoptotic pathway. These findings indicate that this cell death event is initiated through the death receptor-dependent apoptosis pathway. Our study further showed that PML recruits NF-kappa B (NF-κB) to the PML nuclear body, blocks NF-κB binding to its cognate enhancer, and represses its transactivation function with the C-terminal region. Therefore PML inhibits the NF-κB survival pathway. Overexpression of NF-κB rescued cell death induced by PML and PML/TNFκ. These results imply that PML is a functional repressor of NF-κB. This notion was further supported by the finding that the PML−/− mouse embryo fibroblasts (MEFs) are more resistant than the wild-type MEFs to TNFκ-induced apoptosis. In conclusion, our studies convincingly demonstrated that PML potentiates cell death through inhibition of the NF-κB survival pathway. Activation of NF-κB frequently occurs during oncogenesis. Our study here suggests that a loss of PML function enhances the NF-κB survival pathway and this event may contribute to tumorigenesis. ^