8 resultados para Cyclin A2

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endotoxemia from sepsis can injure the gastrointestinal tract through mechanisms that have not been fully elucidated. We have shown that LPS induces an increase in gastric permeability in parallel with the luminal appearance of secretory phospholipase A2 (sPLA2) and its product, lysophosphatidylcholine (lyso-PC). We proposed that sPLA2 acted on the gastric hydrophobic barrier, composed primarily of phosphatidylcholine (PC), to degrade it and produce lyso-PC, an agent that is damaging to the mucosa. In the present study, we have tested whether lyso-PC and/or sPLA2 have direct damaging effects on the hydrophobic barriers of synthetic and mucosal surfaces. Rats were administered LPS (5 mg/kg, i.p.), and gastric contents were collected 5 h later for analysis of sPLA2 and lyso-PC content. Using these measured concentrations, direct effects of sPLA2 and lyso-PC were determined on (a) surface hydrophobicity as detected with an artificial PC surface and with intact gastric mucosa (contact angle analysis) and (b) cell membrane disruption of gastric epithelial cells (AGS). Both lyso-PC and sPLA2 increased significantly in the collected gastric juice of LPS-treated rats. Using similar concentrations to the levels in gastric juice, the contact angle of PC-coated slides declined after incubation with either pancreatic sPLA2 or lyso-PC. Similarly, gastric contact angles seen in control rats were significantly decreased in sPLA2 and lyso-PC-treated rats. In addition, we observed dose-dependent injurious effects of both lyso-PC and sPLA2 in gastric AGS cells. An LPS-induced increase in sPLA2 activity in the gastric lumen and its product, lyso-PC, are capable of directly disrupting the gastric hydrophobic layer and may contribute to gastric barrier disruption and subsequent inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated if CLSI M27-A2 Candida species breakpoints for fluconazole MIC are valid when read at 24 h. Analysis of a data set showed good correlation between 48- and 24-h MICs, as well as similar outcomes and pharmacodynamic efficacy parameters, except for isolates in the susceptible dose-dependent category, such as Candida glabrata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the gynecologic malignancies, epithelial ovarian tumors are the leading cause of death. For the past few decades, the only treatment has involved surgical resection of the tumor and/or general chemotherapies. In an attempt to improve treatment options, we have shown that several oncogenes that are overexpressed in ovarian cancer, PI3K, PKCiota, and cyclin E, all of which have been shown to lead to a poor prognosis and decreased survival, converge into a single pathway that could potentially be targeted therapeutically. Because of the ability of either PKCiota or cyclin E overexpression to independently induce anchorage-independent growth, a hallmark of cancer, we hypothesized that targeting PKCiota expression in ovarian cancer cells could induce a reversion of the transformed phenotype through down regulation of cyclin E. To test this hypothesis, we first established a correlation between PKCiota and cyclin E in a panel of 20 ovarian cancer cell lines. To show that PKCiota is upstream of cyclin E, PKCiota was stably knocked down using RNAi in IGROV cells (epithelial ovarian cancer cell line of serous histology). The silencing of PKCiota resulted in decreased expression of cell cycle drivers, such as cyclin D1/E and CDK2/4, and an increase in p27. These alteration in the regulators of the cell cycle resulted in a decrease in both proliferation and anchorage-independent growth, which was specifically through cyclin E, as determined by a rescue experiment. We also found that the mechanism of cyclin E regulation by PKCiota was at the level of degradation rather than transcription. Using two inhibitors to PI3K, we found that both the active form of PKCiota and total cyclin E levels decreased, implying that the PKCiota/cyclin E pathway is downstream from PI3K. In conclusion, we have identified a novel pathway in epithelial ovarian tumorigenesis (PI3K à PKCiota à Cyclin E à anchorage-independent growth), which could potentially be targeted therapeutically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin E, in complex with cyclin dependent kinase 2 (CDK2), is a positive regulator of G1 to S phase progression of the cell cycle. Deregulation of G1/S phase transition occurs in the majority of tumors. Cyclin E is overexpressed and post-translationally generates low molecular weight (LMW) isoforms in breast cancer, but not normal cells. Such alteration of cyclin E is linked to poor prognosis. Therefore, we hypothesized that the LMW isoforms of cyclin E provide a novel mechanism of cell cycle de-regulation in cancer cells. Insect cell expression system was used to explore the biochemical properties of the cyclin E isoforms. Non-tumorigenic (76NE6) and tumorigenic (T47D) mammary epithelial cells transfected with the cyclin E isoforms and breast tumor tissue endogenously expressing the LMW isoforms were used to study the biologic consequences of the LMW isoforms of cyclin E. All model systems studied show that the LMW forms (compared to full-length cyclin E) have increased kinase activity when partnered with CDK2. Increases in the percentage of cells in S phase and colony formation were also observed after overexpression of LMW compared to full-length cyclin E. The LMW isoforms of cyclin E utilize several mechanisms to attain their hyper-activity. They bind CDK2 more efficiently, and are resistant to inhibition by cyclin dependent kinase inhibitors (CKIs) as compared to full-length cyclin E. In addition, the LMW isoforms sequester the CKIs from full-length cyclin E abrogating the overall negative regulation of cyclin E. Despite their correlation with adverse biological consequences, the direct role of the LMW isoforms of cyclin E in mediating tumorigenesis remained unanswered. Subsequent to LMW cyclin E expression in 76NE6 cells, they lose their ability to enter quiescence and exhibit genomic instability, both characteristic of a tumor cell phenotype. Furthermore, injection of 76NE6 cells overexpressing each of the cyclin E isoforms into the mammary fat pad of nude mice revealed that the LMW isoforms of cyclin E yield tumors, whereas the full-length cyclin E does not. In conclusion, the LMW isoforms of cyclin E utilize several mechanisms to acquire a hyperactive phenotype that results in deregulation of the cell cycle and initiates the tumorigenic process in otherwise non-transformed mammary epithelial cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternate splicing of the cyclin D1 gene gives rise to transcript a and b which encode two protein isoforms cyclin D1a and cyclin D1b. Through testing transcript a and transcript b in a series of human samples, we found that cyclin D1 transcript b is ubiquitously expressed as transcript a but in the lower abundance compared to transcript a. Epidemiological studies have reported that the cyclin D1 gene (CCND1) G870A polymorphism influences the risk for a variety of cancer. In this investigation, we examined the cyclin D1b levels in tumor samples with different genotypes and found that higher levels of cyclin D1b are expressed from the A allele than the G allele. Cyclin D1 is known as a cell cycle regulator facilitating the progression of the cell cycle from G1 to S phase in response to the mitogenic signals. It also interacts with several transcription factors and transcriptional coregulators to modulate their activities. It has been reported that cyclin D1a can substitute for estrogen to activate estrogen receptor α (ERα) mediated transcription and can induce the proliferation of estrogen responsive tissues. However the biological role of cyclin D1b in ERα transcriptional regulation has not been previously explored. In this study, we determined that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription. Cell proliferation assays provided the evidence that cyclin D1b negatively regulates estrogen responsive breast cancer cell growth. Taken together, our findings show that the CCND1 G870A polymorphism is correlated with increased levels of cyclin D1b and that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription providing evidence for the mechanism by which the CCND1 G870A polymorphism may be protective in certain types of breast cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite of much success of breast cancer treatment, basal-like breast cancer subtype still presented as a clinical challenge to mammary oncologist for its lack of available targeted therapy owing to their negative expression of targeted molecules, such as PgR, ERα and Her2. These molecules are all critical regulators in mammary gland development. EZH2, a histone methyltransferase, by forming Polycomb Repressive Complex 2(PRC2) can directly suppress a large array of developmental regulators. Overexpression of cyclin E has also been correlated with basal-like (triple-negative) breast cancer and poor prognosis. We found an important functional link between these two molecules. Cyclin E/Cdk2 can enhance PRC2 function by phosphorylating a specific residue of EZH2, threonine 416 and increasing EZH2's ability to complex with SUZ12. This regulation would further recruit whole PRC2 complex to core promoter regions of these developmental regulators. The local enrichment of PRC2 complex would then trimethylate H3K27 around the core promoter regions and suppress the expression of targeted genes, which included PgR, ERα, erbB2 and BRCA1. This widespread gene suppressive effect imposed by highly active PRC2 complex would then transform the lumina) type cell to adopt a basal-like phenotype. This finding suggested deregulated Cdk2 activity owing to cyclin E overexpression may contribute to basal phenotype through enhancing epigenetic silencing effects by regulating PRC2 function. Inhibition of Cdk2 activity in basal-like cancer cells may help release the suppression, reexpress the silenced genes and become responsive to existing anti-hormone or anti-Her2 therapy. From this study, the mechanisms described here provided a rationale to target basal-like breast cancer by new combinational therapy of Cdk2 inhibitors together with Lapatinib, or Aromatin. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies presented in this thesis focus on two aspects of the involvement of cyclin D1 in epithelial proliferation. Since cyclin D1 has been identified as a target for genetic alterations and deregulation in a variety of human cancers, we studied cyclin D1 expression in two experimental models of epithelial carcinogenesis. These studies provided evidence that cyclin D1 was a potential target of the activating mutation of the Ha-ras gene characteristic of the experimental protocol. In addition, evidence from two independent in vitro models suggested that cyclin D1 was indeed part of the primary cellular response to activated ras, and at least partly responsible for the increase in proliferation observed in ras-transformed cells.^ Cyclin D1 has also been described as a key regulator of the passage through the G1 phase of the cell cycle. Cyclin D1 is induced in response to mitogens in a variety of cell lines, and cells engineered to overexpress cyclin D1 show accelerated G1 transit. In order to study the involvement of cyclin D1 in epithelial cell growth and differentiation, we generated transgenic mice that constitutively overexpress cyclin D1 in stratified epithelia. These mice developed thymic hyperplasia and skin hyperproliferation, providing in vivo evidence of the potential of cyclin D1 to regulate growth of epithelial cells. ^