3 resultados para Complete K-ary Tree

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: HEADS UP {Health Education And Discovering Science while Unlocking Potential} aims to improve health literacy and increase student interest in health science careers by providing cutting-edge content from world-renowned researchers in the Texas Medical Center and beyond to the K-12 school community. [See PDF for complete abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete NotI, SfiI, XbaI and BlnI cleavage maps of Escherichia coli K-12 strain MG1655 were constructed. Techniques used included: CHEF pulsed field gel electrophoresis; transposon mutagenesis; fragment hybridization to the ordered $\lambda$ library of Kohara et al.; fragment and cosmid hybridization to Southern blots; correlation of fragments and cleavage sites with EcoMap, a sequence-modified version of the genomic restriction map of Kohara et al.; and correlation of cleavage sites with DNA sequence databases. In all, 105 restriction sites were mapped and correlated with the EcoMap coordinate system.^ NotI, SfiI, XbaI and BlnI restriction patterns of five commonly used E. coli K-12 strains were compared to those of MG1655. The variability between strains, some of which are separated by numerous steps of mutagenic treatment, is readily detectable by pulsed-field gel electrophoresis. A model is presented to account for the difference between the strains on the basis of simple insertions, deletions, and in one case an inversion. Insertions and deletions ranged in size from 1 kb to 86 kb. Several of the larger features have previously been characterized and some of the smaller rearrangements can potentially account for previously reported genetic features of these strains.^ Some aspects of the frequency and distribution of NotI, SfiI, XbaI and BlnI cleavage sites were analyzed using a method based on Markov chain theory. Overlaps of Dam and Dcm methylase sites with XbaI and SfiI cleavage sites were examined. The one XbaI-Dam overlap in the database is in accord with the expected frequency of this overlap. The occurrence of certain types of SfiI-Dcm overlaps are overrepresented. Of the four subtypes of SfiI-Dcm overlap, only one has a partial inhibitory effect on the activity of SfiI. Recognition sites for all four enzymes are rarer than expected based on oligonucleotide frequency data, with this effect being much stronger for XbaI and BlnI than for NotI and SfiI. The latter two enzyme sites are rare mainly due to apparent negative selection against GGCC (both) and CGGCCG (NotI). The former two enzyme sites are rare mainly due to effects of the VSP repair system on certain di-tri- and tetranucleotides, most notably CTAG. Models are proposed to explain several of the anomalies of oligonucleotide distribution in E. coli, and the biological significance of the systems that produce these anomalies is discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypermodified, hydrophobic 2-methylthio-N$\sp6$-(dimethylallyl)-adenosine (ms${2{\cdot}6}\atop1$A) residue occurs $3\sp\prime$ to the anticodon in tRNA species that read codons beginning with U. The first step (i$\sp6$A37 formation) of this modification is catalyzed by dimethylallyl diphosphate:tRNA dimethyallyltransferase (EC 2.5.1.8), which is the product of the miaA gene. Subsequent steps were proposed to be catalyzed by MiaB and MiaC enzymes to complete the ms${2{\cdot}6}\atop1$A37 modification. The study of functions of the ms${2{\cdot}6}\atop1$A37 is very important because this modified base is one of the best candidates for a role in global control in response to environmental stress. This dissertation describes the further delineation of functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli K-12 cells. This work provides significant information on functions of tRNA modifications in E. coli cells to adapt to stressful environmental conditions. Three hypotheses were tested in this work.^ The first hypothesis tested was that non-optimal translation processes cause increased spontaneous mutagenesis by the induction of SOS response in starving cells. To test this hypothesis, I measured spontaneous mutation rates of wild type cells and various mutant strains which are defective in tRNA modification, SOS response, or oxidative damage repair. I found that the miaA mutation acts as a mutator that increased Lac$\sp+$ reversion rates and Trp$\sp+$ reversion frequencies of the wild-type cells in starving conditions. However, the lexA3(Ind)(which abolishes the induction of SOS response) mutation abolished the mutator phenotype of the miaA mutant. The recA430 mutation, not other identified SOS genes, decreased the Lac$\sp+$ reversion to a less extent than that of the lexA3(Ind) mutation. These results suggest that RecA together with another unidentified SOS gene product are responsible for the process.^ The second hypothesis tested was that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ molecules in form of a protein dimer. To test this hypothesis, three versions of the MiaA protein and seven species of tRNA substrates were purified. Binding studies by gel mobility shift assays, filter binding assays and gel filtration shift assays support the hypothesis that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ as a protein dimer but as a monomer to the anticodon stem-and-loop. These results were further supported by using steady state enzyme kinetic studies.^ The third hypothesis tested in this work was that the miaB gene in E. coli exists and is clonable. The miaB::Tn10dCm insertion mutation of Salmonella typhimurium was transduced to E. coli K-12 cells by using P$\sb1$ and P$\sb{22}$ bacteriophages. The insertion was confirmed by HPLC analyses of nucleotide profiles of miaB mutants of E. coli. The insertion mutation was cloned and DNA sequences adjacent to the transposon were sequenced. These DNA sequences were 86% identical to the f474 gene at 14.97 min chromosome of E. coli. The f474 gene was then cloned by PCR from the wild-type chromosome of E. coli. The recombinant plasmid complemented the mutant phenotype of the miaB mutant of E. coli. These results support the hypothesis that the miaB gene of E. coli exists and is clonable. In summary, functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli cells are further delineated in this work in perspectives of adaptation to stressful environmental conditions and protein:tRNA interaction. (Abstract shortened by UMI.) ^