11 resultados para CHEMOSYSTEMATIC SIGNIFICANCE

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylserine (PS) is distributed almost entirely in the inner leaflet of the erythrocyte membrane bilayer, and appears to be maintained by a 32 kDa integral membrane protein (PS translocase). The expression of PS on the outer leaflet may serve as a recognition signal for macrophages, since insertion of PS into erythrocytes enhances their adherence to macrophages and clearance from the circulation. Therefore I have hypothesized that erythroid cells display PS on their outer leaflet early in differentiation and upon aging. Analysis of murine erythroleukemia cells (MELC, undifferentiated erythroid progenitor cells) showed high levels of PS on the outer leaflet that decreased during differentiation, correlating with the pattern of macrophage adherence. The activity of the PS translocase during differentiation appears to be unchanged although the equilibrium distribution of PS differs. This difference may be due to qualitative changes in the PS translocase. $\sp{125}$I-Bolton/Hunter-labeled-pyridyldithioethylamine ($\sp{125}$I-B/H-PDA), a radiolabeled probe for the PS translocase, labeled a 32 kDa protein in mature erythrocytes whereas in MELC a 45 kDa protein as well as a 32 kDa protein was identified. The abundance of the 45 kDa protein in relation to the 32 kDa protein declined during differentiation, possibly indicating this protein was a precursor of the 32 kDa protein. Analysis of the 45 kDa protein by N-glycosidase F and endoproteinase cleavage suggested this protein was not a glycosylated form of the 32 kDa protein but appeared to share some structural homology. Aged murine erythrocytes had elevated levels of PS on their outer leaflet, as well as decreased PS translocase activity. $\sp{125}$I-B/H-PDA labeled a 32 kDa protein in both normal and aged erythrocytes. However, the latter cells also contained a 28 kDa protein. Experimental evidence suggests that the appearance of the 28 kDa protein may be due to increased oxidation of aged erythrocytes. Examination of PS distribution showed that the levels of PS on the outer leaflet were elevated early in differentiation, decreased during the mature state, and returned to high levels as the erythrocyte aged. In conclusion,the levels of outer leaflet PS correlated with the differentiation status and macrophage recognition of erythroid cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose. Sialyl-Tn(STn) represents an aberrantly glycosylated mucin epitope which is expressed in breast cancer and other adenocarcinomas and is an important target for the development of novel immunotherapeutic approaches. It is a marker of adverse prognosis in colon and ovarian cancer, but information about its prognostic impact in breast cancer is limited. The primary aim of the present study was to investigate the influence of STn expression on outcome of invasive breast cancer in 207 women who received anthracyline-containing adjuvant chemotherapy in a prospective clinical trial.^ Methods. Expression of STn was determined by an immunohistochemical procedure using the B72.3 monoclonal antibody. The extent of staining was determined by two observers using a 0 through 4 point scale, with 0 representing $<$5% of cells staining; 1: 5-25%; 2: 26-50%; 3: 51-75%; and 4: $>$75%. Intraobserver and interobserver agreement was.78-.92 (kappa). Kaplan-Meier and Cox proportional regression survival analyses were used to compare STn-negative and STn-positive patients.^ Results. Forty-eight (23%) of the 207 specimens demonstrated positive staining of STn. With a median follow-up of five years, STn-positivity was associated with a higher 5-year recurrence-free survival time than STn-negativity (67% vs. 80%, respectively; p = 0.03). STn expression was significantly associated with menopausal status (p = 0.04) but not other conventional prognostic markers. The risk of breast cancer recurrence and death was assessed by multivariate Cox regression analyses with adjustment for lymph node status, tumor size, menopausal status, hormone receptor status, nuclear grade, S-phase fraction and ploidy. In the final multivariate model for recurrence-free survival, the three factors that showed prognostic significance were: lymph node status (hazard ratio (HR) 3.04, 95% confidence interval (CI) 1.08-8.49), STn expression (HR 2.02, 95% CI 1.09-3.73), and tumor size (HR 1.96, 95% CI 1.05-3.64). STn was also associated with worse overall survival (HR 2.16, 95% CI 0.95-4.92) in multivariate analysis.^ Conclusion. STn antigen was shown to be a predictor of poor outcome in breast cancer. This tumor-associated antigen may be a valuable marker for identifying individuals at high risk of developing recurrent disease who may benefit from adjuvant therapy targeted at STn following definitive local therapy. Further study is needed to clarify the biologic and prognostic role of STn in breast cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Houston, Texas, once obtained all its drinking water from underground sources. However, in 1853, the city began supplementing its water from the surface source Lake Houston. This created differences in the exposure to disinfection byproducts (DBPs) in different parts of Houston. Trihalomethanes (THMs) are the most common DBP and are useful indicators of DBPs in treated drinking water. This study examines the relationship between THMs in chlorinated drinking water and the incidence of bladder cancer in Houston. ^ Methods. Individual bladder cancer deaths, from 1975 to 2004, were assigned to four surface water exposure areas in Houston utilizing census tracts—area A used groundwater the longest, area B used treated lake water the longest, area C used treated lake water the second longest, and area D used a combination of groundwater and treated lake water. Within each surface water exposure area mortality rates were calculated in 5 year intervals by four race-gender categories. Linear regression models were fitted to the bladder cancer mortality rates over the entire period of available data (1990–2004). ^ Results. A decrease in bladder cancer mortality was observed amongst white males in area B (p = 0.030), white females in area A (p = 0.008), non-white males in area D (p = 0.003), and non-white females in areas A and B (p = 0.002 & 0.001). Bladder cancer mortality differed by race-gender and time (p ≤ 0.001 & p ≤ 0.001), but not by surface water exposure area (p = 0.876). ^ Conclusion. The relationship between bladder cancer mortality and the four surface water exposure areas (signifying THM exposure) was insignificant. This result could be attributable to Houston controlling for THMs starting in the early 1980’s by using chloramine as a secondary disinfectant in the drinking water purification process.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although coagulase-negative staphylococci (C-NS) have been implicated in certain human infections, they are generally regarded as contaminants and their clinical significance is questioned. To assess their role as pathogens, 205 isolates of C-NS from wounds, and body fluids (blood, urine, pleural and peritoneal fluids, etc.) were studied. Patient's charts were reviewed and using strict criteria a determination was made regarding the clinical significance of these isolates. The organisms were then identified using the scheme of Kloos and Schleifer to determine if certain species of C-NS were associated with specific infections. S. epidermidis sensu stricto accounted for 81% of the C-NS isolated; the frequency of other species was S. haemolyticus (6%), S. hominis (5%), S. capitis (4%), S. warneri (3%), and others (1%). Only two isolates were novobiocin resistant; neither was identified as S. saprophyticus. Using these criteria, 22% of C-NS were considered to be clinically significant and the majority of these (93%) were due to S. epidermidis. The most common source of the clinically relevant C-NS isolates was from wounds. These data suggest that identifying C-NS species other than S. epidermidis may be of limited value in predicting clinical significance.^ In addition, selected pathogenic and non-pathogenic strains of C-NS were compared for their ability to adhere to human cells in vitro. Although the results were not conclusive, it appeared that pathogenic C-NS adhered more avidly than non-pathogenic C-NS to buccal cells. Experiments with HeLa cells showed no difference between pathogenic and non-pathogenic C-NS in adherence abilities. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^