8 resultados para CARDIAC-VALVE DISEASE
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVES: We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND: CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS: In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS: ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.
Resumo:
It is widely accepted that hypoplastic left heart syndrome (HLHS), aortic valve stenosis with or without bicuspid aortic valve (AS/BAV) and coarctation of the aorta (CoA) occur in families more commonly with each other than with any other congenital heart defect (CHD). Genetic counseling for CHDs is currently based on empiric risk estimates derived from data collected on all types of CHDs between 1968 and 1990. Additionally, for the specific group of defects described above, termed left-sided lesions, estimates are available for sibling recurrence. Utilizing family history data from 757 probands recruited between 1997 and 2007 from The Children’s Hospital of Philadelphia, this study reassessed the pre/recurrence risks for LSLs specifically. Sibling pre/recurrence risks for HLHS (5.5%, 95% CI: 3.1%-8.9%), CoA (4.0%, 95% CI: 2.1%-6.7%), and AS/BAV (6.0%, 95% CI: 3.3%-9.8%) were higher than currently quoted risks based on sibling data for individual LSLs. Additionally, the prevalence of BAV in 202, apparently unaffected, parents of 134 probands was assessed by echocardiography. BAV, which occurs at a frequency of 1% in the general population, was found to occur in approximately 10% of parents of LSL probands. Lastly, among affected first-degree relative pairs (i.e. siblings, parent-offspring), the majority (65%-70%) were both affected with a LSL. Defect specific concordance rates were highest for AS/BAV. Together, these findings suggest that over the past 20 years with changing diagnostic capabilities and environmental/maternal conditions (e.g. folic acid fortification, increased maternal diabetes and obesity) recurrence risks may have increased, as compared to current LSL specific risk estimates. Based on these risk estimate increases and prior studies, a protocol for screening first-degree relatives of LSL probands should be devised.
Resumo:
Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^
Resumo:
The heart is the first organ to form in vertebrates during embryogenesis, and its circulatory function is essential to embryonic survival. Cardiac morphogenesis comprises a complex series of interactions involving cells from several embryonic origins. These cell-cell interactions are regulated temporally and spatially by programs of inductive signaling events, including BMP signaling transduced by Smads and left-right asymmetry signaling mediated by Pitx2. Disruptions of BMP signaling and left-right asymmetry signaling result in abnormal cardiac morphogenesis that causes congenital heart disease in humans. In this study, conventional and conditional gene targeting approaches were employed to dissect the functions of Smad8 and Smad1, intracellular BMP signaling transducers, and Pitx2, a direct target of left-right signaling, in cardiac development. We generated the Smad8mt mutant allele and the Smad8lacZ knock-in allele. Smad8 homozygous mutant mice were viable and fertile without obvious abnormalities. The Smad8lacZ knock-in allele showed that Smad8 was expressed in the myocardium of cardiac outflow tract and atrioventricular cushions. We did not find defects in these Smad8-expressing cardiac regions in Smad8mt/mt and Smad8lacZ/lacZ mutants, indicating that Smad8 is dispensable for cardiac development. Conditional knockout of Smad1 using the Nkx2.5Cre allele in cardiac mesoderm resulted in partial inactivation of Smad1 in the myocardium and complete deletion of Smad1 in the epicardium, and caused ventricular hypoplasia featured with a thinner compact zone, suggesting that Smad1 signaling in the epicardium is required for myocardial morphogenesis in ventricles. Previous data have shown that Pitx2 null mutants exhibit defects in the cardiac outflow tract, a region populated with cells from the cardiac mesoderm and the cardiac neural crest. We found that the cardiac neural crest normally populated into the outflow tract in Pitx2 null mutant. Moreover, specific deletion of Pitx2 in the neural crest resulted in normal heart formation. Deletion of Pitx2 in the cardiac mesoderm caused defective outflow tract, revealing that the function of Pitx2 in the cardiac outflow tract resides in splanchnic and branchial arch mesoderm, and is independent of cardiac neural crest cells. ^
Resumo:
Borrelia burgdorferi is the etiological agent of Lyme disease, the most common tick-borne disease in the United States. Although the most frequently reported symptom is arthritis, patients can also experience severe cardiac, neurologic, and dermatologic abnormalities. The identification of virulence determinants in infectious B. burgdorferi strains has been limited by their slow growth rate, poor transformability, and general lack of genetic tools. The present study demonstrates the use of transposon mutagenesis for the identification of infectivity-related factors in infectious B. burgdorferi, examines the potential role for chemotaxis in mammalian infection, and describes the development of a novel method for the analysis of recombination events at the Ids antigenic variation locus. A pool of Himar1 mutants was isolated using an infectious B. burgdorferi clone and the transposon vector pMarGent. Clones exhibiting reduced infectivity in mice possessed insertions in virulence determinants putatively involved in host survival and dissemination. These results demonstrated the feasibility of extensive transposon mutagenesis studies for the identification of additional infectivity-related factors. mcp-5 mutants were chosen for further study to determine the role of chemotaxis during infection. Animal studies indicated that mcp-5 mutants exhibited a reduced infectivity potential, and suggested a role for mcp-5 during the early stages of infection. An in vitro phenotype for an mcp-5 mutant was not detected. Genetic complementation of an mcp-5 mutant resulted in restoration of Mcp-5 expression in the complemented clone, as demonstrated by western blotting, but the organisms were not infectious in mice. We believe this result is a consequence of differences in expression between genes located on the linear chromosome and genes present on the circular plasmid used for trans-complementation. Overall, this work implicates mcp-5 as an important determinant of mammalian infectivity. Finally, the development of a computer-assisted method for the analysis of recombination events occurring at the B. burgdorferi vls antigenic variation locus has proven highly valuable for the detailed examination of vls gene conversion. The studies described here provide evidence for the importance of chemotaxis during infection in mice and demonstrate advances in both genetic and computational approaches for the further characterization of the Lyme disease spirochete. ^
Resumo:
The purpose of this study was to elucidate the relationship between mitral valve prolapse and stroke. A population-based historical cohort investigation was conducted among residents of Olmsted County, Minnesota who had an initial echocardiographic diagnosis of mitral valve prolapse from 1975 through 1989. This cohort (N = 1085) was followed for stroke outcomes using the resources of an operational medical record linkage system. There was an overall two-fold increase in the incidence of stroke among individuals with mitral valve prolapse relative to a standard population (standardized morbidity ratio = 2.12, 95% confidence limits = 1.33-3.21). When the data were partitioned by duration of follow-up from the diagnosis of mitral valve prolapse, or by the calendar years at echocardiographic diagnosis, respectively, the association between mitral valve prolapse and stroke was not modified. Mitral valve prolapse subjects 85 years and older were at highest increased risk of developing strokes relative to the general population (standardized morbidity ratio = 5.47, 95% confidence limits = 2.20-11.24). Coronary heart disease, atrial fibrillation, diabetes mellitus and hypertension, were unlikely to have confounded the association between mitral valve prolapse and stroke.^ The cumulative risk of first stroke among individuals initially diagnosed with mitral valve prolapse age 15 to 64 years, given survival to 15.2 years of follow-up, was 4.0%. The cumulative risk of first stroke among individuals initially diagnosed with mitral valve prolapse age 65 to 74 years, given survival to 11.2 years of follow-up, was 13.2%. The cumulative risk of first stroke among individuals initially diagnosed with mitral valve prolapse age 75 years and older, given survival to 6.7 years of follow-up, was 30.6%.^ Among individuals with mitral valve prolapse, age, diabetes, and atrial fibrillation were associated with an increased risk of stroke. Atrial fibrillation was associated with a four-fold rate of stroke and diabetes associated with a seven-fold rate of stroke.^ Findings from this research support the hypothesis that mitral valvular heart prolapse is linked with a stroke sequela. ^
Resumo:
Cardiovascular disease (CVD) is highly preventable, yet it is a leading cause of death among women in Texas. The primary goals of this research were to examine past and current trends of CVD, as well as identify whether there is an association between the insurance coverage and mortality from CVD among women aged 60–65 in Texas between 2000 and 2011. ^ The systematic review of the research is based on the guidelines and recommendations set by the Centre for Reviews and Dissemination for conducting reviews in health care. Over 47 citations of peer-reviewed articles from Ovid MEDLINE and PubMed databases and five websites were identified, of which 7 studies met inclusion criteria for the first systematic review to examine the trends of CVD in Texas. Ten citations of peer-reviewed articles from Ovid MEDLINE and PubMed databases and five web sites were reviewed for the second systematic review (to study the association between insurance coverage and cardiovascular health among Texas women 60–64 years of age), of which 3 studies met inclusion criteria and were included in the research. The results of the study highlighted key gaps in the existing literature and important areas for the further research, as well as determined directions for future public health CVD prevention programs in Texas. ^ Based on the conducted research, the major determinants of premature mortality among women attributed to cardiovascular disease are based on individual level characteristics, more specifically sex, age, race/ethnicity, and education. The results indicate that African American and non-Hispanic white women are more likely to have higher CVD mortality rates than Hispanic women due to higher prevalence of cardiac risk factors. The data also shows higher levels of mortality from CVD in the southeastern United States, with Texas ranking as the third state with the highest prevalence of CVD among women. According to the Texas Department of State Health Services, there are approximately 56,000 deaths caused by CVD annually in Texas, which represents about one death every ten minutes. Coronary artery disease and stroke were the causes of 31.2 percent of all female deaths in Texas in 2009, meaning that approximately 68 women die from any form of cardiac disease in Texas each day. ^ The data of the reviewed studies indicate that women' lack of health insurance was significantly associated with a higher prevalence of cardiovascular disease. The uninsured women were more likely to be unaware of their risk factors and more likely to have undiagnosed diabetes—a co-morbidity factor of CVD. One of the studies also reports strong correlation between state rates of uninsured and lower rates of preventive care. Given these strong correlations, those who were chronically uninsured were at a higher risk of mortality than the insured, due to prolonged periods of time without basic access to preventive and medical care. ^ Suggested recommendations to decrease CVD mortality rates in Texas are consistent with the existing literature and include state policy development that addresses elimination of health disparities, consideration of potential benefits of universal health coverage by the legislative policymakers, and maintenance of solid partnerships between public health agencies and hospitals to educate on, diagnose, and treat CVD among the female population in Texas. ^
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^