5 resultados para Biomarker concept
em DigitalCommons@The Texas Medical Center
Resumo:
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
Resumo:
BACKGROUND: Increased intracranial pressure (ICP) is a serious, life-threatening, secondary event following traumatic brain injury (TBI). In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology. METHODS: In the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS RESULTS: Consistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP >or= 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained 128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained CONCLUSIONS: Our results suggest that serum IL-6 can be used for the differential diagnosis of elevated ICP in isolated TBI.
Resumo:
In chronic lymphocytic leukemia (CLL), one of the best predictors of outcome is the somatic mutation status of the immunoglobulin heavy chain variable region (IGHV) genes. Patients whose CLL cells have unmutated IGHV genes have a median survival of 8 years; those with mutated IGHV genes have a median survival of 25 years. To identify new prognostic biomarkers and molecular targets for therapy in untreated CLL patients, we reanalyzed the raw data from four published gene expression profiling microarray studies. Of 88 candidate biomarkers associated with IGHV somatic mutation status, we identified LDOC1 (Leucine Zipper, Down-regulated in Cancer 1), as one of the most significantly differentially expressed genes that distinguished mutated from unmutated CLL cases. LDOC1 is a putative transcription factor of unknown function in B-cell development and CLL pathophysiology. Using a highly sensitive quantitative RT-PCR (QRT-PCR) assay, we confirmed that LDOC1 mRNA was dramatically down-regulated in mutated compared to unmutated CLL cases. Expression of LDOC1 mRNA was also vii strongly associated with other markers of poor prognosis, including ZAP70 protein and cytogenetic abnormalities of poor prognosis (deletions of chromosomes 6q21, 11q23, and 17p13.1, and trisomy 12). CLL cases positive for LDOC1 mRNA had significantly shorter overall survival than negative cases. Moreover, in a multivariate model, LDOC1 mRNA expression predicted overall survival better than IGHV mutation status or ZAP70 protein, among the best markers of prognosis in CLL. We also discovered LDOC1S, a new LDOC1 splice variant. Using isoform-specific QRT-PCR assays that we developed, we found that both isoforms were expressed in normal B cells (naïve > memory), unmutated CLL cells, and in B-cell non-Hodgkin lymphomas with unmutated IGHV genes. To investigate pathways in which LDOC1 is involved, we knocked down LDOC1 in HeLa cells and performed global gene expression profiling. GFI1 (Growth Factor-Independent 1) emerged as a significantly up-regulated gene in both HeLa cells and CLL cells that expressed high levels of LDOC1. GFI1 oncoprotein is implicated in hematopoietic stem cell maintenance, lymphocyte development, and lymphomagenesis. Our findings indicate that LDOC1 mRNA is an excellent biomarker of overall survival in CLL, and may contribute to B-cell differentiation and malignant transformation.
Resumo:
Currently, there are no molecular biomarkers that guide treatment decisions for patients with head and neck squamous cell carcinoma (HNSCC). Several retrospective studies have evaluated TP53 in HNSCC, and results have suggested that specific mutations are associated with poor outcome. However, there exists heterogeneity among these studies in the site and stage of disease of the patients reviewed, the treatments rendered, and methods of evaluating TP53 mutation. Thus, it remains unclear as to which patients and in which clinical settings TP53 mutation is most useful in predicting treatment failure. In the current study, we reviewed the records of a cohort of patients with advanced, resectable HNSCC who received surgery and post-operative radiation (PORT) and had DNA isolated from fresh tumor tissue obtained at the time of surgery. TP53 mutations were identified using Sanger sequencing of exons 2-11 and the associated splice regions of the TP53 gene. We have found that the group of patients with either non-disruptive or disruptive TP53 mutations had decreased overall survival, disease-free survival, and an increased rate of distant metastasis. When examined as an independent factor, disruptive mutation was strongly associated with the development of distant metastasis. As a second aim of this project, we performed a pilot study examining the utility of the AmpliChip® p53 test as a practical method for TP53 sequencing in the clinical setting. AmpliChip® testing and Sanger sequencing was performed on a separate cohort of patients with HNSCC. Our study demonstrated the ablity of the AmpliChip® to call TP53 mutation from a single formalin-fixed paraffin-embedded slide. The results from AmpliChip® testing were identical with the Sanger method in 11 of 19 cases, with a higher rate of mutation calls using the AmpliChip® test. TP53 mutation is a potential prognostic biomarker among patients with advanced, resectable HNSCC treated with surgery and PORT. Whether this subgroup of patients could benefit from the addition of concurrent or induction chemotherapy remains to be evaluated in prospective clinical trials. Our pilot study of the p53 AmpliChip® suggests this could be a practical and reliable method of TP53 analysis in the clinical setting.
Resumo:
This study is an analytical investigation of the nature and implications of the current conceptions of scientific misconduct, arguing that the question of what constitutes misconduct in science is significantly more complex than what conventionally has been believed. Complicating the definitions of misconduct are the differences between professional science and non-scientific professions, in their respective norms of what constitutes valid knowledge, and what counts as appropriate and inappropriate practice. While institutionalized science claims that there is clear differentiation between its standards of validity and those of the non-scientific professions, this paper argues that, when it comes to misconduct, the perceived boundaries between the scientific and non-scientific professions are breached; the practice standards that science currently employs in self-policing misconduct have come to resemble the minimal juridical standards of practice that other professions employ. This study attempts, despite erosion of these traditional boundaries, to move from legalistic standards of scientific practice to intramural standards of practice, and in so doing, to hold scientific practice to a higher standard than ordinary public conduct. The result is a clearer understanding of scientific misconduct to aid those individual scientists who are required to make onerous determinations about the appropriateness of specific practices by their peers. ^