3 resultados para Bifunktioneller Chelator

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear imaging is used for non-invasive detection, staging and therapeutic monitoring of tumors through the use of radiolabeled probes. Generally, these probes are used for applications in which they provide passive, non-specific information about the target. Therefore, there is a significant need for actively-targeted radioactive probes to provide functional information about the site of interest. This study examined endostatin, an endogenous inhibitor of tumor angiogenesis, which has affinity for tumor vasculature. The major objective of this study was to develop radiolabeled analogues of endostatin through novel chemical and radiochemical syntheses, and to determine their usefulness for tumor imaging using in vitro and in vivo models of vascular, mammary and prostate tumor cells. I hypothesize that this binding will allow for a non-invasive approach to detection of tumor angiogenesis, and such detection can be used for therapeutic monitoring to determine the efficacy of anti-angiogenic therapy. ^ The data showed that endostatin could be successfully conjugated to the bifunctional chelator ethylenedicysteine (EC), and radiolabeled with technetium-99m and gallium-68, providing a unique opportunity to use a single precursor for both nuclear imaging modalities: 99mTc for single photon emission computed tomography and 68Ga for positron emission tomography, respectively. Both radiolabeled analogues showed increased binding as a function of time in human umbilical vein endothelial cells and mammary and prostate tumor cells. Binding could be blocked in a dose-dependent manner by unlabeled endostatin implying the presence of endostatin receptors on both vascular and tumor cells. Animal biodistribution studies demonstrated that both analogues were stable in vivo, showed typical reticuloendothelial and renal excretion and produced favorable absorbed organ doses for application in humans. The imaging data provide evidence that the compounds quantitate tumor volumes with clinically-useful tumor-to-nontumor ratios, and can be used for treatment follow-up to depict changes occurring at the vascular and cellular levels. ^ Two novel endostatin analogues were developed and demonstrated interaction with vascular and tumor cells. Both can be incorporated into existing nuclear imaging platforms allowing for potential wide-spread clinical benefit as well as serving as a diagnostic tool for elucidation of the mechanism of action of endostatin. ^