7 resultados para Bayesian probability

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When conducting a randomized comparative clinical trial, ethical, scientific or economic considerations often motivate the use of interim decision rules after successive groups of patients have been treated. These decisions may pertain to the comparative efficacy or safety of the treatments under study, cost considerations, the desire to accelerate the drug evaluation process, or the likelihood of therapeutic benefit for future patients. At the time of each interim decision, an important question is whether patient enrollment should continue or be terminated; either due to a high probability that one treatment is superior to the other, or a low probability that the experimental treatment will ultimately prove to be superior. The use of frequentist group sequential decision rules has become routine in the conduct of phase III clinical trials. In this dissertation, we will present a new Bayesian decision-theoretic approach to the problem of designing a randomized group sequential clinical trial, focusing on two-arm trials with time-to-failure outcomes. Forward simulation is used to obtain optimal decision boundaries for each of a set of possible models. At each interim analysis, we use Bayesian model selection to adaptively choose the model having the largest posterior probability of being correct, and we then make the interim decision based on the boundaries that are optimal under the chosen model. We provide a simulation study to compare this method, which we call Bayesian Doubly Optimal Group Sequential (BDOGS), to corresponding frequentist designs using either O'Brien-Fleming (OF) or Pocock boundaries, as obtained from EaSt 2000. Our simulation results show that, over a wide variety of different cases, BDOGS either performs at least as well as both OF and Pocock, or on average provides a much smaller trial. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian adaptive randomization (BAR) is an attractive approach to allocate more patients to the putatively superior arm based on the interim data while maintains good statistical properties attributed to randomization. Under this approach, patients are adaptively assigned to a treatment group based on the probability that the treatment is better. The basic randomization scheme can be modified by introducing a tuning parameter, replacing the posterior estimated response probability, setting a boundary to randomization probabilities. Under randomization settings comprised of the above modifications, operating characteristics, including type I error, power, sample size, imbalance of sample size, interim success rate, and overall success rate, were evaluated through simulation. All randomization settings have low and comparable type I errors. Increasing tuning parameter decreases power, but increases imbalance of sample size and interim success rate. Compared with settings using the posterior probability, settings using the estimated response rates have higher power and overall success rate, but less imbalance of sample size and lower interim success rate. Bounded settings have higher power but less imbalance of sample size than unbounded settings. All settings have better performance in the Bayesian design than in the frequentist design. This simulation study provided practical guidance on the choice of how to implement the adaptive design. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part One, the foundations of Bayesian inference are reviewed, and the technicalities of the Bayesian method are illustrated. Part Two applies the Bayesian meta-analysis program, the Confidence Profile Method (CPM), to clinical trial data and evaluates the merits of using Bayesian meta-analysis for overviews of clinical trials.^ The Bayesian method of meta-analysis produced similar results to the classical results because of the large sample size, along with the input of a non-preferential prior probability distribution. These results were anticipated through explanations in Part One of the mechanics of the Bayesian approach. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treating patients with combined agents is a growing trend in cancer clinical trials. Evaluating the synergism of multiple drugs is often the primary motivation for such drug-combination studies. Focusing on the drug combination study in the early phase clinical trials, our research is composed of three parts: (1) We conduct a comprehensive comparison of four dose-finding designs in the two-dimensional toxicity probability space and propose using the Bayesian model averaging method to overcome the arbitrariness of the model specification and enhance the robustness of the design; (2) Motivated by a recent drug-combination trial at MD Anderson Cancer Center with a continuous-dose standard of care agent and a discrete-dose investigational agent, we propose a two-stage Bayesian adaptive dose-finding design based on an extended continual reassessment method; (3) By combining phase I and phase II clinical trials, we propose an extension of a single agent dose-finding design. We model the time-to-event toxicity and efficacy to direct dose finding in two-dimensional drug-combination studies. We conduct extensive simulation studies to examine the operating characteristics of the aforementioned designs and demonstrate the designs' good performances in various practical scenarios.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: For most cytotoxic and biologic anti-cancer agents, the response rate of the drug is commonly assumed to be non-decreasing with an increasing dose. However, an increasing dose does not always result in an appreciable increase in the response rate. This may especially be true at high doses for a biologic agent. Therefore, in a phase II trial the investigators may be interested in testing the anti-tumor activity of a drug at more than one (often two) doses, instead of only at the maximum tolerated dose (MTD). This way, when the lower dose appears equally effective, this dose can be recommended for further confirmatory testing in a phase III trial under potential long-term toxicity and cost considerations. A common approach to designing such a phase II trial has been to use an independent (e.g., Simon's two-stage) design at each dose ignoring the prior knowledge about the ordering of the response probabilities at the different doses. However, failure to account for this ordering constraint in estimating the response probabilities may result in an inefficient design. In this dissertation, we developed extensions of Simon's optimal and minimax two-stage designs, including both frequentist and Bayesian methods, for two doses that assume ordered response rates between doses. ^ Methods: Optimal and minimax two-stage designs are proposed for phase II clinical trials in settings where the true response rates at two dose levels are ordered. We borrow strength between doses using isotonic regression and control the joint and/or marginal error probabilities. Bayesian two-stage designs are also proposed under a stochastic ordering constraint. ^ Results: Compared to Simon's designs, when controlling the power and type I error at the same levels, the proposed frequentist and Bayesian designs reduce the maximum and expected sample sizes. Most of the proposed designs also increase the probability of early termination when the true response rates are poor. ^ Conclusion: Proposed frequentist and Bayesian designs are superior to Simon's designs in terms of operating characteristics (expected sample size and probability of early termination, when the response rates are poor) Thus, the proposed designs lead to more cost-efficient and ethical trials, and may consequently improve and expedite the drug discovery process. The proposed designs may be extended to designs of multiple group trials and drug combination trials.^