454 resultados para Biology, Biostatistics|Health Sciences, Pharmacy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hospitals, like all organizations, have both a mission and a finite supply of resources with which to accomplish that mission. Because the inventory of therapeutic drugs is among the more expensive resources needed by a hospital to achieve its mission, a conceptual model of structure plus process equals outcome posits that adequate emphasis should be placed on optimization of the organization's investment in this important structural resource to provide highest quality outcomes. Therefore emphasis should be placed on the optimization of pharmacy inventory because lowering the financial investment in drug inventory and associated costs increases productive efficiency, a key element of quality. ^ In this study, a post-intervention analysis of a hospital pharmacy inventory management technology implementation at The University of Texas M.D. Anderson Cancer Center was conducted to determine if an intervention which reduced a hospital's financial investment in pharmaceutical inventory provided an opportunity to incrementally optimize the organization's mix of structural resources thereby improving quality of care. The results suggest that hospital pharmacies currently lacking technology to support automated purchasing logistics and perpetual, real-time inventory management for drugs may achieve measurable benefits from the careful implementation of such technology, enabling the hospital to lower its investment in on-hand inventory and, potentially, to reduce overall purchasing expenditures. ^ The importance of these savings to the hospital and potentially to the patient should not be underestimated for their ability to generate funding for previously unfunded public health programs or in their ability to provide financial relief to patients in the form of lower drug costs given the current climate of escalating healthcare costs and tightening reimbursements.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dorsal noradrenergic bundle (DB) is a major ascending pathway which originates in the locus coeruleus of the brainstem and projects to the forebrain. The behavioral role of the DB remains unclear, despite a great deal of effort. Selective attention and anxiety are two areas which have been the focus of recent research. Some studies of the DB utilize the neurotoxin 6-hydroxydopamine (6-OHDA), since 6-OHDA injection into this pathway results in greater than 90 percent depletion of cortical and hippocampal norepinephrine (NE). Neophobia, the fear of novelty, has been reported to be either increased or decreased by 6-OHDA lesions of the DB, depending on conditions. The selective attention hypothesis would be supported by increased neophobia after 6-OHDA lesions, while the anxiety hypothesis would be supported by decreased neophobia. We have examined the effects of 6-OHDA DB lesions on neophobia under conditions in which the test environment and/or the test food were novel. We found that the lesion attenuates neophobia, defined as an increased preference for novel food, when both the environment and food were novel. The lesion had no effect on neophobia when only the environment or food was novel.^ We examined the effects of chronic intraventricular NE infusions on behavior in our neophobia test, in sham and 6-OHDA DB lesioned animals. We found that chronic NE infusions into lesioned animals significantly reversed the lesion-induced attenuation of neophobia. Sham/NE infused animals demonstrated a 40 percent greater preference for familiar food compared to sham/saline infused animals. These data suggest that infusions of NE have an effect opposite to lesion-induced attenuation of neophobia. Chronic infusions of the alpha adrenoceptor agonists had no consistent effects on neophobia. The beta adrenoceptor agonist, isoproterenol reversed the lesion-induced attenuation of neophobia but not to a statistically significant degree. Isoproterenol increased neophobia in sham animals. Forskolin, an adenylate cyclase activator, mimicked the effects of NE infusion by significantly reversing the lesion-induced attenuation of neophobia, while increasing neophobia in sham animals. These results suggest that increased release of NE during stress increases neophobia in part by stimulating beta adrenoceptors which activate adenylate cyclase. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fourth component of human complement (C4) exists in blood as two major forms or isotypes which differ in their biochemical and functional properties. Because C4A preferentially transacylates onto amino groups, it has been postulated that this isotype is more important in the clearance of immune complexes. Patients having systemic lupus erythematosus (SLE), an autoimmune disease, have an increased incidence of C4A null genes and presumably decreased levels of C4A. Currently accepted methods for the detection of C4, however, cannot accurately quantitate C4A and C4B. Thus, their role in disease susceptibility and activity has not been studied. A novel immunoassay, which utilized heat-aggregated IgG to activate and capture C4, was developed for accurate quantitation of total C4, C4A and C4B by monoclonal antibody conjugates. Higher mean total C4 values were found in a healthy Black control population when compared to White controls. This appeared to be due to an increase in C4B. In SLE patients, mean total C4 levels were significantly lower than controls regardless of disease activity. Serial patient studies showed that the ratio of C4A:C4B remained relatively constant. When the patient group was compared to controls based on C4 null gene status, the mean levels of C4A were identical while C4B was decreased in the patients. This suggests that the common HLA-B8, Dr3 C4A*Q0 gene deletion found in SLE patients may also adversely affect genetic control of the C4B genes. Furthermore, low levels of C4A cannot fully account for disease development in SLE patients having C4A null genes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitin, N-acetylglucosamine and crude shrimp shell were found to support growth and survival of non-01 and 01 Vibrio cholerae species in aquatic microcosms. Growth was found to be concentration-dependent when the amount of chitin used was within the range of 0.5 g/L to 5 g/L. Toxigenic strains of V. cholerae retained their ability to produce cholera toxin in bay water with chitin as the sole source of nutrient. The amount of chitin solubilized in bay water was shown to depend on salinity but not pH. The inability of V. cholerae to grow in dilute (10%) sewage is reported, and its bearing on the adequacy of the currently used fecal coliform count as a measure of shellfish and shellfish harvesting water quality is discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this study has been to investigate the effects at the molecular level of trisomy of mouse chromosome 7 in chemically induced skin tumors. It was previously proposed that the initiation event in the mouse skin carcinogenesis model is a heterozygous mutation of the Ha-ras-1 gene, mapped to chromosome 7. Previous studies in this laboratory identified trisomy 7 as one of the primary nonrandom cytogenetic abnormalities found in the majority of severely dysplastic papillomas and squamous cell carcinomas induced in SENCAR mice by an initiation-promotion protocol. Therefore, the first hypothesis tested was that trisomy 7 occurs by specific duplication of the chromosome carrying a mutated Ha-ras-1 allele. Results of a quantitative analysis of normal/mutated allelic ratios of the Ha-ras-1 gene confirmed this hypothesis, showing that most of the tumors exhibited overrepresentation of the mutated allele in the form of 1/2, 0/3, and 0/2 (normal/mutated) ratios. In addition, histopathological analysis of the tumors showed an apparent association between the degree of malignancy and the dosage of the mutated Ha-ras-1 allele. To determine the mechanism for loss of the normal Ha-ras-1 allele, found in 30% of the tumors, a comparison of constitutional and tumor genotypes was performed at different informative loci of chromosome 7. By combining Southern blot and polymerase chain reaction fragment length polymorphism analyses of DNAs extracted from squamous cell carcinomas, complete loss of heterozygosity was detected in 15 of 20 tumors at the Hbb locus, and in 5 of 5 tumors at the int-2 locus, both distal to Ha-ras-1. In addition, polymerase chain reaction analysis of DNA extracted from papillomas indicated that loss of heterozygosity occurs in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion, suggesting that this event may be associated to the acquisition of the malignant phenotype. Allelic dosage analysis of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1, indicated that loss of heterozygosity on mouse chromosome 7 occurs by a mitotic recombination mechanism. Overall, these findings suggest the presence of a putative tumor suppressor locus on the 7F1-ter region of mouse chromosome 7. Thus, loss of function by homozygosis at this putative suppressor locus may complement activation of the Ha-ras-1 gene during tumor progression, and might be associated with the malignant conversion stage of mouse skin carcinogenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-2 activated lymphocytes, designated lymphokine-activated killers (LAK), acquire the unique capacity to express potent cytologic activity against a broad spectrum of abnormal and/or transformed NK-sensitive and NK-resistant target cells while sparing normal cell types. Investigations into the target spectra exhibited by cloned effector cells indicate that LAK cells express a polyspecific recognition mechanism that identifies an undefined class of cell surface-associated molecules expressed on susceptible targets. This report extends our previous investigations into the biochemical nature of these molecules by characterizing the functional role of two tumor cell-surface-associated epitopes implicated in conferring target cells with susceptibility to LAK-mediated cytotoxicity. The first moiety is implicated in the formation of effector/target cell conjugates. This binding ligand is preferentially expressed on tumor cells relative to LAK-resistant PBL target cells, sensitive to trypsin treatment, resistant to functional inactivation by heat- and detergent-induced conformational changes, and does not require N-linked glycosylation to maintain binding activity. In contrast, a carbohydrate-associated epitope represents the second tumor-associated molecule required for target cell susceptibility to LAK cells. Specifically, N-linked glyoprotein synthesis represents an absolute requirement for post-trypsin recovery of target cell susceptibility. The minimal N-linked oligosaccharide residue capable of restoring this second signal has been identified as a high mannose structure. Although ultimately required for tumor cell susceptibility, as measured in $\sp{51}$Cr-release assays, this N-glycan-associated molecule is not required for the differential tumor cell binding expressed by LAK cells. Furthermore, N-glycan expression is not adequate in itself to confer target cell susceptibility. Additional categories of cell surface components have been investigated, including O-linked oligosaccharides, and glycosaminoglycans, without identifying additional moieties relevant to target cell recognition. Collectively, these data suggest that tumor cell recognition by LAK cells is dependent on cell surface presentation of two epitopes: a trypsin-sensitive molecule that participates in the initial conjugate formation and an N-glycan-associated moiety that is involved in a post-binding event required for target cell killing. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BCR gene is involved in the pathogenesis of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Typically, the 5$\sp\prime$ portion of BCR on chromosome 22 becomes fused to a 5$\sp\prime$ truncated ABL gene from chromosome 9 resulting in a chimeric BCR-ABL gene. To investigate the role of the BCR gene product, a number of BCR peptide sequences were used to generate anti-BCR antibodies for detection of BCR and BCR-ABL proteins. Since both BCR and ABL proteins have kinase activity, the anti-BCR antibodies were tested for their ability to immunoprecipitate BCR and BCR-ABL proteins from cellular lysates by use of an immunokinase assay. Antisera directed towards the C-terminal portions of P160 BCR, sequences not present in BCR-ABL proteins, were capable of co-immunoprecipitating P210 BCR-ABL from the Ph$\sp1$- positive cell line K562. Re-immunoprecipitation studies following complete denaturation showed that C-terminal BCR antisera specifically recognized P160 BCR but not P210 BCR-ABL. These and other results indicated the presence of a P160 BCR/P210 BCR-ABL protein complex in K562 cells. Experiments performed with Ph$\sp1$-positive ALL cells and uncultured Ph$\sp1$-positive patient white blood cells established the general presence of BCR/BCR-ABL protein complexes in BCR-ABL expressing cells. However, two cell lines derived from Ph$\sp1$-positive patients lacked P160 BCR/P210 BCR-ABL complexes. Lysates from one of these cell lines mixed with lysates from a cell line that expresses only P160 BCR failed to generate BCR/BCR-ABL protein complexes in vitro indicating that P160 BCR and P210 BCR-ABL do not simply oligomerize.^ Two-dimensional tryptic maps were performed on both BCR and BCR-ABL proteins labeled in vitro with $\sp{32}$P. These maps indicate that the autophosphorylation sites in BCR-ABL proteins are primarily located within BCR exon 1 sequences in both P210 and P185 BCR-ABL, and that P160 BCR is phosphorylated in trans in similar sites by the activated ABL kinase of both BCR-ABL proteins. These results provide strong evidence that P160 BCR serves as a target for the BCR-ABL oncoprotein.^ K562 cells, induced to terminally differentiate with the tumor promoter TPA, show a loss of P210 BCR-ABL kinase activity 12-18 hours after addition of TPA. This loss coincides with the loss of activity in P160 BCR/P210 BCR-ABL complexes but not with the loss of the P210 BCR-ABL, suggesting the existence of an inactive form of P210 BCR-ABL. However, a degraded BCR-ABL protein served as the kinase active form preferentially sequestered within the remaining BCR/BCR-ABL protein complex.^ The results described in this thesis form the basis for a model for BCR-ABL induced leukemias which is presented and discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparanase, an endo-$\beta$-D-glucuronidase, has been associated with melanoma metastasis. Polyclonal antibodies directed against the murine N-terminal heparanase peptide detected a M$\sb{\rm r}\sim 97,000$ protein upon SDS-polyacrylamide gel electrophoresis of mouse melanoma and human melanoma cell lysates. In an indirect immunocytochemical study, metastatic human A375-SM and mouse B16-BL6 melanoma cells were stained with the anti-heparanase antibodies. Heparanase antigen was localized in the cytoplasm of permeabilized melanoma cells as well as at the cell surface of unpermeabilized cells. Immunohistochemical staining of frozen sections from syngeneic mouse organs containing micrometastases of B16-BL6 melanoma demonstrated heparanase localized in metastatic melanoma cells, but not in adjacent normal tissues. Similar studies using frozen sections of malignant melanomas resected from patients indicated that heparanase is localized in invading melanoma cells, but not in adjacent connective tissues.^ Monoclonal antibodies directed against murine heparanase were developed and characterized. Monoclonal antibody 10E5, an IgM, precipitated and inhibitated the enzymatic activity of heparanase. A 2.6 kb cDNA was isolated from a human melanoma $\lambda$gt11 cDNA library using the monoclonal antibody 10E5. Heparan sulfate cleavage activity was detected in the lysogen lysates from E. Coli Y1089 infected with the $\lambda$gt11 cDNA and this activity was inhibited in the presence of 10-fold excess of heparin, a potent inhibitor of heparanase. The nucleotide sequence of the cDNA was determined and insignificant homology was found with the gene sequences currently known. The cDNA hybridized to a 3.2-3.4 kb mRNA in human A375 melanoma, WI-38 fibroblast, and THP-1 leukemia cells using Northern blots.^ Heparanase expression was examined using Western and Northern blots. In comparison to human A375-P melanoma cells, the quantity of 97,000 protein recognized by the polyclonal anti-heparanase antibodies doubled in the metastatic variant A375-SM cells and the quantity of 3.2-3.4 kb mRNA doubled in A375MetMix, a metastatic variant similar to A375-SM cells. In B16 murine melanoma cell, the intensity of the 97,000 protein increased more than 2 times comparing with B16-F1 cells. The extent in the increase of the protein and the mRNA levels is comparable to the change of heparanase activity observed in those cells.^ In summary, the studies suggest that (a) the N-terminus of the heparanase molecule in mouse and human is antigenically related; (b) heparanase antigens are localized at the cell surface and in the cytoplasm of metastatic human and mouse melanoma cells; (c) heparanase antigens are localized in invasive and metastatic murine and human melanomas in vivo, but not in adjacent normal tissues; (d) heparanase molecule appeared to be differentially expressed at the transcriptional as well as at the translational level; and (e) the size of human heparanase mRNA is 3.2-3.4 kilobase. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous co-factors, genetic, environmental and physical, play an important role in development and prognosis of cancer. Each year in the USA, more than 31,000 cases of oral and 13,000 cases of cervical cancer are diagnosed. Substantial epidemiological data supports a high correlation between development of these cancers and the presence of specific types of human papillomaviruses (HPV). Molecular biological studies show that not only are several of the viral genes necessary and sufficient to cause transformation but they also function synergistically with other co-factors. Evidence suggests that prevention of infection or inhibition of viral gene expression may alter the course of malignant transition. The main objective of this project was to test the hypothesis that some human carcinoma cells, containing HPV, behave in malignant manner because the viral genes function in the maintenance of some aspect of the transformed phenotype.^ The specific aims were (1) to select oral and cervical cancer cell lines which were HPV-negative or which harbored transcriptionally active HPV-18, (2) to construct and determine the effects of recombinant sense or antisense expressing vectors, (3) to test the effects of synthetic antisense oligodeoxynucleotides on the transformed behavior of these cells.^ To screen cells, we performed Southern and Northern analysis and polymerase chain reactions. When antisense-expressing vectors were used, cells harboring low numbers of HPV-18 where unable to survive transfection but they were readily transfected with all other constructs. Rare antisense transfectants obtained from HPV-positive cells showed significantly altered characteristics including malignant potential in nude mice. The HPV-negative cells showed no differences in transfection efficiencies or growth characteristics with any construct.^ In addition, treatment of the HPV-positive cells with antisense, but not random oligodeoxynucleotides, resulted in decreased cell proliferation and even cell death. These effects were dose-dependent, synergistic and HPV-specific.^ These results suggest that expression of viral genes play an important role in the maintenance of the transformed phenotype which implies that inhibition of expression, by antisense molecules, may be therapeutic in HPV-induced tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the immunochemical nature of the polyclonal immune response to the 14mer peptide TINKEDDESPGLYG and to identify interactions among antibodies to more than one epitope. Two groups of rabbits were immunized with the 14mer peptide and a Keyhole Limpet hemocyanin (KLH) carrier, but with KLH attached either to the 14mer's N- or C-terminus. Two approximate epitopes were mapped by an antibody-capture enzyme-linked immunosorbent assay method using antiserum obtained when KLH was oriented on the C-terminus of the 14mer. A precise mapping of the epitopes performed with inhibition enzyme immunoassays (iEIAs) resulted in an N-terminal 6mer epitope TINKED and a C-terminal 10mer epitope EDDESPGLYG. The epitopes overlapped by two amino acids. IEIAs and iEIAs incorporating antibody-blocking peptides indicated that the two anti-epitope antibody fractions did not interfere with one anothers' epitope binding. It was postulated that the anti-TINKED and anti-EDDESPGLYG antibody fractions individually bind their respective hydrophobic epitope "core" region at the N- or C-terminal of peptide TINKEDDESPGLYG, while sharing the two hydrophilic overlap amino acids. This antibody "lap joint" binding interaction can be accomplished by each of the anti-epitope antibodies binding an opposite side of the epitope overlap region in the shallow periphery of its binding site. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rubella virus (RV) typically causes a mild childhood illness, but complications can result from both viral and immune-mediated pathogenesis. RV can persist in the presence of neutralizing antibodies, suggesting that cell-mediated immune responses may be necessary for viral clearance. However, the molecular determinants recognized by RV-specific T-cells have not been identified. Using recombinant proteins which express the entire RV structural open reading frame in proliferation assays with lymphocytes of RV-immune individuals, domains which elicit major histocompatibility complex class II-restricted helper T-cells were identified. Synthetic peptides representing these domains were used to define specific epitopes. Two immunodominant domains were mapped to the capsid protein sequence C$\sb1$-C$\sb{29}$ and the E1 glycoprotein sequence E1$\sb{202}$-E1$\sb{283}.$ RV-specific MHC class I-restricted cytotoxic T lymphocytes (CTLs) were identified using a chromium-release assay with infected fibroblasts as target cells. An infectious Sindbis virus vector expressing each of the RV structural proteins identified the capsid, E2 and E1 proteins as targets of CTLs. Specific CTL epitopes were mapped within the previously identified immunodominant domains. This study identified domains of the RV structural proteins that may be beneficial for development of a synthetic vaccine, and provides normative data on RV-specific T-cell responses that should enhance our ability to understand RV persistence and associated complications. ^