90 resultados para biophysics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers.^ For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber.^ For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent.^ The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several interactive parameters of protein-calorie malnutrition imposed during postnatal ontogeny on the myelination of rat brain wre investigated. Postnatal starvation depresses the rate of myelin protein synthesis to approximately the same extent in all major brain regions examined (cerebral cortex, cerebellum, striatum, hippocampus, hypothalamus, midbrain and medulla), indicating a relatively uniform reduction in myelination throughout the brain. Early starvation from birth through 8 days, as well as starvation occurring late, from 14 to 30 days, produced no lasting deficit in myelin accumulation. Starvation from birth through 14 days or from birth through 20 days produces lasting, significant myelin deficits in all brain regions when examined following ad libitum feeding to 60 days of age. These data, in combination with the metabolic studies of myelin synthesis, show that severe starvation occurring during the 2nd and 3rd weeks of postnatal life produces an immediate reduction in myelin synthesis, and that the subsequent deficit in myelin accumulation is irreversible by nutritional rehabilitation. With respect to the relative severity of nutritional restriction occurring during this "critical" interval of brain ontogeny, additional studies showed that mild undernourishment (producing less than 20 percent growth lag) produces no myelin deficit. There appears to be a threshold effect such that undernutrition producing a growth lag of between 20 to 30 percent first produces a measurable deficit. Increasingly severe regimens of nutritional restriction which produce approximately 30, 40 and 50 percent body weight lags result in initial myelin deficits of 25, 55 and 60 percent, respectively. Initial myelin deficits do not recover following nutritional rehabilitation, although myelin continues to increase in both normal and all undernourished populations. At the cellular level, severe postnatal nutritional restriction appears to depress both the initial synthesis of myelin precursor proteins (as demonstrated for proteolipid protein) as well as their subsequent assembly into myelin membrane. All of the findings of the present studies are consistent with a hypothetical model of undernutrition-induced brain hypomyelination in which the primary defect consists of a failure of oligodendroglia to myelinate a substantial percentage of axons, resulting in a greatly decreased ratio of myelinated to unmyelinated axons. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitive assays utilizing a cell-free and an intracellular system were employed to study the molecular bases of the DNA-damaging reactions of neocarzinostatin (NCS). In the cell-free DNA system, super-helical form I DNA from the bacteriophage PM2 was used as the substrate. The three forms of DNA present after treatment with NCS were separated by agarose gel electrophoresis. When NCS-damaged DNA was assayed under neutral conditions, there was a progressive decrease in the amount of surviving form I DNA and a corresponding increase in form II (nicked, relaxed circular) DNA, but very little increase in form III (linear duplex) DNA. This indicates that NCS introduces primarily single-strand breaks. However later studies showed that there were some site-specific double-strand breaks mediated by NCS on PM2 DNA. Seven such specific sites were mapped on the PM2 genome. When the damage was assayed under nondenaturing alkaline conditions or with the apurinic/apyrimidinic endonuclease IV, there was a slightly greater decrease in the amount of surviving form I DNA compared with neutral conditions indicating the presence of some alkali-labile sites.^ NCS-mediated DNA damage and repair were examined with cultured Chinese hamster ovary (CHO) cells using either alkaline elution for analysis of single-strand breaks or neutral elution for analysis of double-strand breaks. Most of the strand breaks introduced by NCS were capable of being rejoined. However, there was a small amount of residual DNA damage remaining unrejoined at 24-hr after removal of the drug. The amount of residual DNA damage was higher in a CHO mutant cell line (EM9) having a higher sensitivity to killing by NCS than its parental strain (AA8). Other lesions, DNA-protein complexes and alkali-labile sites, were detected after NCS treatment but they constituted only a small fraction of the DNA damage.^ Based on the above information, it can be postulated that NCS introduces some very lethal DNA damage. It is likely that the lethal lesions are a subset of the total DNA lesions representing the residual DNA damage. This DNA damage may be composed of site-specific, unrejoinable double-strand breaks and are thus the primary lesion leading to NCS-mediated lethality.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research has been to study the molecular basis for chromosome aberration formation. Predicated on a variety of data, Mitomycin C (MMC)-induced DNA damage has been postulated to cause the formation of chromatid breaks (and gaps) by preventing the replication of regions of the genome prior to mitosis. The basic protocol for these experiments involved treating synchronized Hela cells in G(,1)-phase with a 1 (mu)g/ml dose of MMC for one hour. After removing the drug, cells were then allowed to progress to mitosis and were harvested for analysis by selective detachment. Utilizing the alkaline elution assay for DNA damage, evidence was obtained to support the conclusion that Hela cells can progress through S-phase into mitosis with intact DNA-DNA interstrand crosslinks. A higher level of crosslinking was observed in those cells remaining in interphase compared to those able to reach mitosis at the time of analysis. Dual radioisotope labeling experiments revealed that, at this dose, these crosslinks were associated to the same extent with both parental and newly replicated DNA. This finding was shown not to be the result of a two-step crosslink formation mechanism in which crosslink levels increase with time after drug treatment. It was also shown not to be an artefact of the double-labeling protocol. Using neutral CsCl density gradient ultracentrifugation of mitotic cells containing BrdU-labeled newly replicated DNA, control cells exhibited one major peak at a heavy/light density. However, MMC-treated cells had this same major peak at the heavy/light density, in addition to another minor peak at a density characteristic for light/light DNA. This was interpreted as indicating either: (1) that some parental DNA had not been replicated in the MMC treated sample or; (2) that a recombination repair mechanism was operational. To distinguish between these two possibilities, flow cytometric DNA fluorescence (i.e., DNA content) measurements of MMC-treated and control cells were made. These studies revealed that the mitotic cells that had been treated with MMC while in G(,1)-phase displayed a 10-20% lower DNA content than untreated control cells when measured under conditions that neutralize chromosome condensation effects (i.e., hypotonic treatment). These measurements were made under conditions in which the binding of the drug, MMC, was shown not to interfere with the stoichiometry of the ethidium bromide-mithramycin stain. At the chromosome level, differential staining techniques were used in an attempt to visualize unreplicated regions of the genome, but staining indicative of large unreplicated regions was not observed. These results are best explained by a recombinogenic mechanism. A model consistent with these results has been proposed.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human a2 -macroglobulin ( a2 M; homotetramer, Mr 720 kDa) is an essential scavenger of proteinases in the serum. Each of its four subunits has a ‘bait region’, with cleavage sequences for almost all endo-proteinases, an unusual thiol ester moiety and a receptor-binding domain (RBD). Bait region cleavage in native a2 M ( a2 M-N) by a proteinase results in rapid thiol ester breakage, with a large-scale structural transformation, in which a2 M uniquely entraps the proteinase in a cage-like structure and exposes receptor-binding domains for rapid endocytosis. Transformed a2 M ( a2 M-TR) contains up to two proteinases, which remain active to small substrates. 3-D electron microscopy is optimally suited to study this unusual structural change at resolutions near (1/30) Å−1. ^ The structural importance of the thiol esters was demonstrated by a genetically-engineered a2 M, with the cysteines involved in thiol ester formation mutated to serines, which appeared structurally homologous to a2 M-TR. This demonstrates that the four highly labile thiol esters alone maintain the a2 M-N structure, while the ‘closed trap’ formed by a2 M-TR is a more stable structural form. ^ Half-transformed a2 M ( a2 M-HT), with cleaved bait regions and thiol esters in only two of its four subunits, provides an important structural link between a2 M-N and a2 M-TR. A comparison with a2 M-N showed the two proteinase-entrapping domains were above and below the plane bisecting the long axis. Both a2 M-N and a2 M-TR consist of two dense, oppositely twisted strands with significant interconnections, indicating that the structural change involves a rotation of these strands. In a2 M-HT these strands were partially untwisted with large central openings, revealing the manner in which the proteinase enters the internal cavity of a2 M. ^ In reconstructions of a2 M-N, a2 M-HT and a2 M-TR labeled with a monoclonal Fab, the Fabs were located on distal ends of each constitutive strand, demonstrating an anti-parallel arrangement of the subunits. Separation between the top and bottom pairs of Fabs was nearly the same on all structures, but the pairs were rotated about the long axis. Taken together, these results indicate that upon proteinase cleavage the two strands in a2 M-N separate. The proteinase enters the structure, while the strands re-twist to encage it. In a2 M-TR, which displays receptor-binding arms, more than two subunits are transformed as strands in the transformed half of a2 M-HT were not separated. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astronauts performing extravehicular activities (EVA) are at risk for occupational hazards due to a hypobaric environment, in particular Decompression Sickness (DCS). DCS results from nitrogen gas bubble formation in body tissues and venous blood. Denitrogenation achieved through lengthy staged decompression protocols has been the mainstay of prevention of DCS in space. Due to the greater number and duration of EVAs scheduled for construction and maintenance of the International Space Station, more efficient alternatives to accomplish missions without compromising astronaut safety are desirable. ^ This multi-center, multi-phase study (NASA-Prebreathe Reduction Protocol study, or PRP) was designed to identify a shorter denitrogenation protocol that can be implemented before an EVA, based on the combination of adynamia and exercise enhanced oxygen prebreathe. Human volunteers recruited at three sites (Texas, North Carolina and Canada) underwent three different combinations (“PRP phases”) of intense and light exercise prior to decompression in an altitude chamber. The outcome variables were detection of venous gas embolism (VGE) by precordial Doppler ultrasound, and clinical manifestations of DCS. Independent variables included age, gender, body mass index, oxygen consumption peak, peak heart rate, and PRP phase. Data analysis was performed both by pooling results from all study sites, and by examining each site separately. ^ Ten percent of the subjects developed DCS and 20% showed evidence of high grade VGE. No cases of DCS occurred in one particular PRP phase with use of the combination of dual-cycle ergometry (10 minutes at 75% of VO2 peak) plus 24 minutes of light EVA exercise (p = 0.04). No significant effects were found for the remaining independent variables on the occurrence of DCS. High grade VGE showed a strong correlation with subsequent development of DCS (sensitivity, 88.2%; specificity, 87.2%). In the presence of high grade VGE, the relative risk for DCS ranged from 7.52 to 35.0. ^ In summary, a good safety level can be achieved with exercise-enhanced oxygen denitrogenation that can be generalized to the astronaut population. Exercise is beneficial in preventing DCS if a specific schedule is followed, with an individualized VO2 prescription that provides a safety level that can then be applied to space operations. Furthermore, VGE Doppler detection is a useful clinical tool for prediction of altitude DCS. Because of the small number of high grade VGE episodes, the identification of a high probability DCS situation based on the presence of high grade VGE seems justified in astronauts. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnitude of the interaction between cigarette smoking, radiation therapy, and primary lung cancer after breast cancer remains unresolved. This case control study further examines the main and joint effects of cigarette smoking and radiation therapy (XRT) among breast cancer patients who subsequently developed primary lung cancer, at The University of Texas M. D. Anderson Cancer Center (MDACC) in Houston, Texas. Cases (n = 280) were women diagnosed with primary lung cancer between 1955 and 1970, between 30–89 years of age, who had a prior history of breast cancer, and were U.S. residents. Controls (n = 300) were randomly selected from 37,000 breast cancer patients at MDACC and frequency matched to cases on age at diagnosis (in 5-year strata), ethnicity, year of breast cancer diagnosis (in 5-year strata), and had survived at least as long as the time interval for lung cancer diagnosis in the cases. Stratified analysis and unconditional logistic regression modeling were used to calculate the main and joint effects of cigarette smoking and radiation treatment on lung cancer risk. Medical record review yielded smoking information on 93% of cases and 84% of controls, and among cases 45% received XRT versus 44% of controls. Smoking increased the odds of lung cancer in women who did not receive XRT (OR = 6.0, 95%CI, 3.5–10.1) whereas XRT was not associated with increased odds (OR = 0.5, 95%CI, 0.2–1.1) in women who did not smoke. Overall the odds ratio for both XRT and smoking together compared with neither exposure was 9.00 (9 5% CI, 5.1–15.9). Similarly, when stratifying on laterality of the lung cancer in relation to the breast cancer, and when the time interval between breast and lung cancers was >10 years, there was an increased odds for both smoking and XRT together for lung cancers on the same side as the breast cancer (ipsilateral) (OR = 11.5, 95% CI, 4.9–27.8) and lung cancers on the opposite side of the breast cancer (contralateral) (OR= 9.6, 95% CI, 2.9–0.9). After 20 years the odds for the ipsilateral lung were even more pronounced (OR = 19.2, 95% CI, 4.2–88.4) compared to the contralateral lung (OR = 2.6, 95% CI, 0.2–2.1). In conclusion, smoking was a significant independent risk factor for lung cancer after breast cancer. Moreover, a greater than multiplicative effect was observed with smoking and XRT combined being especially evident after 10 years for both the ipsilateral and contralateral lung and after 20 years for the ipsilateral lung. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectrophoresis (DEP) has been used to manipulate cells in low-conductivity suspending media using AC electrical fields generated on micro-fabricated electrode arrays. This has created the possibility of performing automatically on a micro-scale more sophisticated cell processing than that currently requiring substantial laboratory equipment, reagent volumes, time, and human intervention. In this research the manipulation of aqueous droplets in an immiscible, low-permittivity suspending medium is described to complement previous work on dielectrophoretic cell manipulation. Such droplets can be used as carriers not only for air- and water-borne samples, contaminants, chemical reagents, viral and gene products, and cells, but also the reagents to process and characterize these samples. A long-term goal of this area of research is to perform chemical and biological assays on automated, micro-scaled devices at or near the point-of-care, which will increase the availability of modern medicine to people who do not have ready access to large medical institutions and decrease the cost and delays associated with that lack of access. In this research I present proofs-of-concept for droplet manipulation and droplet-based biochemical analysis using dielectrophoresis as the motive force. Proofs-of-concept developed for the first time in this research include: (1) showing droplet movement on a two-dimensional array of electrodes, (2) achieving controlled dielectric droplet injection, (3) fusing and reacting droplets, and (4) demonstrating a protein fluorescence assay using micro-droplets. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectrophoresis—the tendency of a material of high dielectric permittivity to migrate in an electrical field gradient to a region of maximum field strength—provides an ideal motive force for manipulating small volumes of biological analytes in microfluidic microsystems. The work described in this thesis was based on the hypothesis that dielectrophoresis could be exploited to provide high-resolution cell separations in microsystems as well as a means for the electrically-controllable manipulation of solid supports for molecular analysis. To this end, a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system was developed and the separation performance evaluated using various types and sizes of polystyrene microspheres as model particles. It was shown that separation of the polystyrene beads was based on the differences in their effective dielectrophoretic properties. The ability of an improved DEP/G-FFF system to separate genetically identical, but phenotypically dissimilar cell types was demonstrated using mixtures of 6m2 mutant rat kidney cells grown under transforming and non-transforming culture conditions. Additionally, a panel of engineered dielectric microspheres was designed with specific, predetermined dielectrophoretic properties such that their dielectrophoretic behaviors would be controllable and predictable. The fabrication method involved the use of gold-coated polystyrene microsphere cores coated with a self-assembled monolayer of alkanethiol and, optionally, a self-assembled monolayer of phospholipid to form a thin-insulating-shell-over-conductive-interior structure. The successful development of the DEP/G-FFF separation system and the dielectrically engineered microspheres provides proof-of-principle demonstrations of enabling dielectrophoresis-based microsystem technology that should provide powerful new methods for the manipulation, separation and identification of analytes in many diverse fields. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. ^ The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. ^ MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. ^ The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum dose for these organs. ^ It is concluded that modeling the tandem and ovoid internal structures is necessary for accurate dose calculations, the bladder shielding segments may not be necessary, and that the ICRU38 bladder point is irrelevant. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ca2+-binding protein calmodulin (CaM) is a key transducer of Ca2+ oscillations by virtue of its ability to bind Ca 2+ selectively and then interact specifically with a large number of downstream enzymes and proteins. It remains unclear whether Ca2+ -dependent signaling alone can activate the full range of Ca 2+/CaM regulated processes or whether other regulatory schemes in the cell exist that allow specific targeting of CaM to subsets of Ca 2+/CaM binding sites or regions of the cell. Here we investigate the possibility that alterations of the availability of CaM may serve as a potential cellular mechanism for regulating the activation of CaM-dependent targets. By utilizing sensitive optical techniques with high spatial and temporal resolution, we examine the intracellular dynamics of CaM signaling at a resolution previously unattainable. After optimizing and characterizing both the optical methods and fluorescently labeled probes for intracellular measurements, the diffusion of CaM in the cytoplasm of HEK293 cells was analyzed. It was discovered that the diffusion characteristics of CaM are similar to that of a comparably sized inert molecule. Independent manipulation of experimental parameters, including increases in total concentrations of CaM and intracellular Ca2+ levels, did not change the diffusion of CaM in the cytoplasm. However, changes in diffusion were seen when the concentration of Ca2+/CaM-binding targets was increased in conjunction with elevated Ca2+. This indicates that CaM is not normally limiting for the activation of Ca 2+/CaM-dependent enzymes in HEK293 cells but reveals that the ratio of CaM to CaM-dependent targets is a potential mechanism for changing CaM availability. Next we considered whether cellular compartmentalization may act to regulate concentrations of available Ca2+/CaM in hippocampal neurons. We discovered changes in diffusion parameters of CaM under elevated Ca2+ conditions in the soma, neurite and nucleus which suggest that either the composition of cytoplasm is different in these compartments and/or they are composed of unique families of CaM-binding proteins. Finally, we return to the HEK293 cell and for the first time directly show the intracellular binding of CaM and CaMKII, an important target for CaM critical for neuronal function and plasticity. Furthermore, we analyzed the complex binding stoichiometry of this molecular interaction in the basal, activated and autophosphorylated states of CaMKII and determined the impact of this binding on CaM availability in the cell. Overall these results demonstrate that regulation of CaM availability is a viable cellular mechanism for regulating the output of CaM-dependent processes and that this process is tuned to the specific functional needs of a particular cell type and subcellular compartment. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^