27 resultados para retina rod


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents structural, immunochemical and neurochemical evidence for glutamatergic retinotectal synaptic transmission, augmenting and extending previous physiological and anatomical studies. The evidence is especially striking when the laminar patterns of ($\sp3$H) L-glutamate receptor binding, ($\sp3$H) L-glutamate high affinity uptake (HAU) and glutamate immunoreactivity (GLIR) of the dorsal tectum are compared. All show high activity in the tectal SGFS, with a peak in the most superficial laminae of SGFS followed by dip in the b-c region, and a second broad peak in deeper SGFS. Uptake and immunoreactivity bear a stronger resemblance to one another than either does to receptor binding, consistent with the fact that HAU and GLIR are localized in the same structures: glutamatergic terminals, intrinsic cell bodies and their processes. Receptor binding, as attested by the lack of enucleation effects, is a marker of postsynaptic receptors. In summary, these results are consistent with the hypothesis that most of the retinal projection to the optic tectum is glutamatergic: (1) A glutamate/aspartate HAU system exists in the superficial laminae, and it is dependent upon an intact retinal input, as shown developmentally and by retinal ablation; (2) Glutamate-like immunoreactivity appears in retinorecipient tectal regions (partially responsive to enucleation), in cell bodies of retinal ganglion cells and displaced ganglion cells, and in a non-tectal ganglion cell projection, the ectomammilary nucleus; (3) Sodium-independent glutamate receptor binding (which remains unchanged by enucleation) is most intense in the retinorecipient regions of the tectum and the ectomammilary nucleus. This binding is pharmacologically typical of a CNS sensory structure, being dominated by the quisqualate/kainate receptor subclass. Thus, as with other sensory systems, a portion of the retinotectal projection has been shown to include glutamatergic afferents with the distribution and properties expected of the primary projection ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinal circuitry underlying the release of dopamine was examined in the turtle, Pseudemys scripta elegans, using neurochemical release studies, anatomical techniques, and biochemistry. There was a dose- and calcium-dependent release of dopamine from turtle retinas incubated in $\sp3$H-dopamine after perfusion of the GABA antagonist bicuculline. This indicated that dopamine release was tonically inhibited by GABA. Other putative retinal transmitters were examined. Glutamate antagonists selective for hyperpolarizing bipolar cells, such as 2,3-piperidine dicarboxylic acid (PDA), caused dose- and calcium-dependent release of dopamine from the retina. In contrast, release was not observed after perfusion with 4-aminophosphonobutyric acid, a specific antagonist of depolarizing bipolar cells. This indicated that depolarizing bipolar cells were not involved in retinal circuitry underlying the release of dopamine in the turtle retina. The release produced by PDA was blocked by bicuculline, indicating a polysynaptic mechanism of release. None of the other agents tested, which included carbachol, strychnine, dopamine uptake inhibitors, serotonin, tryptamine, muscimol, melatonin, or dopamine itself produced release.^ The cells capable of the release of dopamine were identified using both uptake autoradiography and immunocytochemical localization with dopamine antisera. The simplest circuitry based on these findings is signal transmission from photoreceptors to hyperpolarizing bipolar cells then to GABAergic cells, and finally to dopaminergic amacrine cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological analysis of neonatal rabbit retina suggests that the type-A horizontal cell acts as the pioneer cell for development of the OPL. It is the first mature element of the OPL, and it forms the infrastructure upon which the OPL accrues. The role of type-A horizontal cells in influencing postnatal development of the OPL was examined.^ GABAergic characteristics of the type-A horizontal cell were defined. The type-A horizontal cell was found to possess two more GABAergic characteristics in addition to those previously demonstrated, during a short period in early postnatal development: endogenous stores of GABA and the GABA precursor, glutamate. Lesioning the type-A horizontal cell resulted in their permanent loss in addition to the disappearance of cone terminals and a dramatic increase in rod terminals within the OPL. Thus the type-A cells are not a necessary prerequisite for positioning the OPL in postnatal development, but may be necessary for establishment of the normal photoreceptor mosaic.^ Since type-A horizontal cells possess a number of GABAergic qualities during the period of cone photoreceptor cell differentiation, and there are reports of GABA's trophic action in other developing neuronal systems; the role that GABAergic type-A horizontal cells play in directing photoreceptor differentiation was examined.^ Disrupting effects of GABA-A receptor antagonists indicate that type-A horizontal cells act as postsynaptic targets for the growing cone terminals of photoreceptor cells. These trophic or synaptic interactions may involve GABA-A receptors activated by GABA released from horizontal cells. These findings are consistent with the hypothesis that type-A horizontal cells act as pioneering cells in directing the postnatal development of the OPL.^ These studies offer an in depth analysis of the structural and chemical relationship between type-A horizontal cells and other elements of the OPL from which the roles of type-A horizontal cells and the GABA system in development can be defined. They contribute to our knowledge of both structural and GABAergic mechanisms involved in central nervous system development. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cholinergic amacrine cells of the rabbit retinal are the only neurons which accumulate choline and also synthesize acetylcholine (ACh). It is widely accepted that the physiologically evoked release of acetylcholine can be taken as a measure of the activity of the entire cholinergic population. Initially, we examined the possibility that these cells receive excitatory input via glutamate receptors from glutamatergic neurons. Glutamate analogs were found to cause massive ACh release from the rabbit retina. Glutamate was found to activate several different receptor subtypes. Selective glutamate antagonists were used to separate the responses evoked by the different glutamate receptor subtypes. The kainate receptor was determined pharmacologically to be the subtype activated physiologically. Since bipolar cells make direct contact with cholinergic amacrine cells, our results support the hypothesis the bipolar cell neurotransmitter is glutamate. Although NMDA receptors can be activated by NMDA analogs, they are not activated during the physiologically evoked release of ACh. A separate study examined the possibility that L-homocysteate could be the bipolar cell neurotransmitter and the results placed serious constraints on this possibility.^ GABA$\sb{\rm A}$ agonists and antagonists are known to have powerful effects on ACh release from the rabbit retina. By pharmacologically blocking the excitatory input from bipolar cells, we attempted to determine the site of GABA$\sb{\rm A}$ input. Our results suggest that the predominant site of GABA$\sb{\rm A}$ input is onto the bipolar cells presynaptic to cholinergic amacrine cells. In a separate study, we found SR-95531 to be a potent and selective GABA$\sb{\rm A}$ receptor antagonist. In addition, GABA$\sb{\rm B}$ agonists and antagonists were found to have minor or no effects on ACh release. Glycine was also examined, its inhibitory effects were found to be very similar to GABA$\sb{\rm A}$ agonists. In contrast, strychnine was found to increase basal but inhibit light evoked ACh release. Additional results indicated that the predominant site of glycinergic input is onto the presynaptic bipolar cells. Our results suggest a different role for glycine compared to GABA in shaping the light evoked release of ACh from the rabbit retina. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal ganglion cells carry signals from the eye to the brain. One of the most common types of ganglion cells is parasol cells. They have larger dendritic trees, somas and axons than other ganglion cells. While much was known about parasol cell light responses, little was known about how these responses are formed. One possibility is that they receive input from a unique set of local circuit neurons that have similar responses. The goal was to identify these presynaptic neurons and study their synaptic connectivity.^ Ganglion cells receive input from bipolar and amacrine cells, but there are numerous subtypes of each. To determine which of these were most likely to provide input to parasol cells, the parasol cells were intracellularly-injected and then various bipolar and amacrine cells were immunolabeled and the tissue analyzed using a confocal microscope. DB3 bipolar cells labeled with antibodies to calbindin made extensive contacts with OFF parasol cells. Antibodies to recover in labeled flat midget bipolar cells (FMB). They made only random contacts with OFF parasol cells, and they are not expected to provide significant input. Type DB2 bipolar cells and FMB cells labeled with antibodies to excitatory amino acid transporter-2 made extensive contacts with OFF parasol cells. This suggests that DB2 bipolar cells are likely to provide input to parasol cells.^ Two types of amacrine cells were labeled in material containing injected parasol cells. Cholinergic amacrine cells were labeled with antibodies to choline acetyltransferase, and they made extensive contacts with ON parasol cells. The large amacrine cells labeled with antibodies to a precursor of cholecystokinin were among the amacrine cells that are tracer-coupled to parasol cells.^ From electron microscopic (EM) analysis, most of the synapses made by DB3 axons were found on varicosities. Some postsynaptic and presynaptic amacrine cells resembled AII amacrine cells. Others were relatively electron-lucent and may be cholinergic amacrine cells or cholecystokinin-containing amacrine cells. Gap junctions were found between neighboring DB3 axons. They occurred whenever two axons contacted each other, and the junctions were as large as the area of contact. In double-label EM experiments, DB3 axons made synapses onto OFF parasol cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal detachment is a common ophthalmologic procedure, and outcome is typically measured by a single factor-improvement in visual acuity. Health related functional outcome testing, which quantifies patient's self-reported perception of impairment, can be integrated with objective clinical findings. Based on the patient's self-assessed lifestyle impairment, the physician and patient together can make an informed decision on the treatment that is most likely to benefit the patient. ^ A functional outcome test (the Houston Vision Assessment Test-Retina; HVAT-Retina) was developed and validated in patients with multiple retinal detachments in the same eye. The HVAT-Retina divides an estimated total impairment into subcomponents: contribution of visual disability (potentially correctable by retinal detachment surgery) and nonvisual physical disabilities (co-morbidities not affected by retinal detachment surgery. ^ Seventy-six patients participated in this prospective multicenter study. Seven patients were excluded from the analysis because they were not certain of their answers. Cronbach's alpha coefficient was 0.91 for presurgery HVAT-Retina and 0.94 post-surgery. The item-to-total correlation ranged from 0.50 to 0.88. Visual impairment score improved by 9 points from pre-surgery (p = 0.0003). Physical impairment score also improved from pre-surgery (p = 0.0002). ^ In conclusion, the results of this study demonstrate that the instrument is reliable and valid in patients presenting with recurrent retinal detachments. The HVAT-Retina is a simple instrument and does not burden the patient or the health professional in terms of time or cost. It may be self-administrated, not requiring an interviewer. Because the HVAT-Retina was designed to demonstrate outcomes perceivable by the patient, it has the potential to guide the decision making process between patient and physician. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian retinas receive input from histaminergic neurons in the posterior hypothalamus. These neurons are most active during the waking state of the animal, but their role in retinal information processing is not known. To determine the function of these retinopetal axons, their targets in the rat and monkey retina were identified. Using antibodies to three histamine receptors, HR1, HR2, and HR3, the immunolabeling was analyzed by confocal and electron microscopy. These experiments showed that mammalian retinas possess histamine receptors. In macaques and baboons, diurnal species, HR3 receptors were found at the apex of ON-bipolar cell dendrites in cone pedicles and rod spherules, sclerad to the other neurotransmitter receptors that have been localized there. In addition, HR1 histamine receptors were localized to large puncta in the inner plexiform layer, a subset of ganglion cells and retinal blood vessels. In rats, a nocturnal species, the localization of histamine receptors in the retina was markedly different. Most HR1 receptors were localized to dopaminergic amacrine cells and on elements in the rod spherule. To determine how histaminergic retinopetal axons contribute to retinal information processing, responses of retinal ganglion cells to histamine were analyzed. The effects of histamine on the maintained and light-evoked activity of retinal ganglion cells were analyzed. In monkeys, histamine and the HR3 agonist, methylhistamine, increased or decreased the maintained activity of most ganglion cells, but a few did not respond. The responses of a subset of ganglion cells to light stimuli were decreased by histamine, a finding suggesting that histaminergic retinopetal axons contribute to light adaptation during the day. In rats, histamine nearly always increased the maintained activity and produced both increases and decreases in the light responses. The effects of histamine on maintained activity of ganglion cells in the rat can be partially attributed to HR1-mediated changes in the activity of dopaminergic amacrine cells, at night. Together, these experiments provide the first indication of the function of retinopetal axons in mammalian retinas. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the rabbit retina, there are two kinds of horizontal cells (HCs). The A-type HC is a large axonless cell which contacts cones exclusively. The B-type HC is an axon bearing cell. While the somatic dendrites of B-type HCs also contact cones, the axon expands into an elaborately branched structure, the axon terminal (AT), which contacts a large number of rods. It is difficult to label the different HCs selectively by immunochemical methods. Therefore, we developed dye injection methods to label each type of HC. Then it was possible, (1) to describe the detailed structure of the AT (2) to identify the glutamate receptors mediating cone input to A and B-type HCs and rod input to ATs and (3) to test the hypothesis that the B-type HCs are coupled via Cx57 gap junctions. ^ To obtain well filled examples of single HCs, it was necessary to block gap junction coupling to stop the spread of Neurobiotin through the network. We used dye coupling in A-type HCs to screen a series of potential gap junction antagonists. One of these compounds, meclofenamic acid (MFA), was potent, water soluble and easily reversible. This compound may be a useful tool to manipulate gap junction coupling. ^ In the presence of MFA, Neurobiotin passed down the axon of B-type HCs to reveal the detailed structure of the AT. We observed that only one AT ending entered each rod spherule invagination. This observation was confirmed by calculation and two dye injections. ^ Glutamate is the neurotransmitter used by both rods and cones. AMPA receptors were colocalized with the dendrites of A and B-type HCs at each cone pedicle. In addition, AMPA receptors were located on the AT ending at each rod spherule. Thus rod and cone input to HCs is mediated by AMPA receptors. ^ A-type and B-type HCs may express different connexins because they have different dye-coupling properties. Recently, we found that connexin50 (Cx50) is expressed by A-type HCs. B-type HCs and B-type ATs are also independently coupled. Cx57 was expressed in the OPL and double label studies showed that Cx 57 was colocalized with the AT matrix but not with the somatic dendrites of B-type HCs. ^ In summary, we have identified a useful gap junction antagonist, MFA. There is one AT ending at each rod spherule, rods inputs to ATs is mediated by AMPA receptors and coupling in the AT matrix is mediated by Cx57. This confirms that HCs with different properties use distinct connexins. The properties of ATs described in this research are consistent. The connections and properties reported here suggest that ATs functions as rod HCs and provide a negative feedback signal to rods. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although more than 100 genes associated with inherited retinal disease have been mapped to chromosomal locations, less than half of these genes have been cloned. This text includes identification and evaluation of candidate genes for three autosomal dominant forms of inherited retinal degeneration: atypical vitelliform macular dystrophy (VMD1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP). ^ VMD1 is a disorder characterized by complete penetrance but extremely variable expressivity, and includes macular or peripheral retinal lesions and peripappilary abnormalitites. In 1984, linkage was reported between VMD1 and soluble glutamate-pyruvate transaminase GPT); however, placement of GPT to 8q24 on linkage maps had been debated, and VMD1 did not show linkage to microsatellite markers in that region. This study excluded linkage between the loci by cloning GPT, identifying the nucleotide substitution associated with the GPT sozymes, and by assaying VMD1 family samples with an RFLP designed to detect the substitution. In addition, linkage of VMD1 to the known dominant macular degeneration loci was excluded. ^ CORD is characterized by early onset of color-vision deficiency, and decreased visual acuity, However, this retinal degeneration progresses to no light perception, severe macular lesion, and “bone-spicule” accumulations in the peripheral retina. In this study, the disorder in a large Texan family was mapped to the CORD2 locus of 19q13, and a mutation in the retina/pineal-specific cone-rod homeobox gene (CRX) was identified as the disease cause. In addition, mutations in CRX were associated with significantly different retinal disease phenotypes, including retinitis pigmentosa and Leber congenital amaurosis. ^ Many of the mutations leading to inherited retinal disorders have been identified in genes like CRX, which are expressed predominantly in the retina and pineal gland. Therefore, a combination of database analysis and laboratory investigation was used to identify 26 novel retina/pineal-specific expressed sequence tag (EST) clusters as candidate genes for inherited retinal disorders. Eight of these genes were mapped into the candidate regions of inherited retinal degeneration loci. ^ Two of the eight clusters mapped into the retinitis pigmentosa RP13 candidate region of 17p13, and were both determined to represent a single gene that is highly expressed in photoreceptors. This gene, the Ah receptor-interacting like protein-1 (AIPL1), was cloned, characterized, and screened for mutations in RP13 patient DNA samples. ^