Function of histaminergic retinopetal axons in rat and primate retinas
Data(s) |
01/01/2004
|
---|---|
Resumo |
Mammalian retinas receive input from histaminergic neurons in the posterior hypothalamus. These neurons are most active during the waking state of the animal, but their role in retinal information processing is not known. To determine the function of these retinopetal axons, their targets in the rat and monkey retina were identified. Using antibodies to three histamine receptors, HR1, HR2, and HR3, the immunolabeling was analyzed by confocal and electron microscopy. These experiments showed that mammalian retinas possess histamine receptors. In macaques and baboons, diurnal species, HR3 receptors were found at the apex of ON-bipolar cell dendrites in cone pedicles and rod spherules, sclerad to the other neurotransmitter receptors that have been localized there. In addition, HR1 histamine receptors were localized to large puncta in the inner plexiform layer, a subset of ganglion cells and retinal blood vessels. In rats, a nocturnal species, the localization of histamine receptors in the retina was markedly different. Most HR1 receptors were localized to dopaminergic amacrine cells and on elements in the rod spherule. To determine how histaminergic retinopetal axons contribute to retinal information processing, responses of retinal ganglion cells to histamine were analyzed. The effects of histamine on the maintained and light-evoked activity of retinal ganglion cells were analyzed. In monkeys, histamine and the HR3 agonist, methylhistamine, increased or decreased the maintained activity of most ganglion cells, but a few did not respond. The responses of a subset of ganglion cells to light stimuli were decreased by histamine, a finding suggesting that histaminergic retinopetal axons contribute to light adaptation during the day. In rats, histamine nearly always increased the maintained activity and produced both increases and decreases in the light responses. The effects of histamine on maintained activity of ganglion cells in the rat can be partially attributed to HR1-mediated changes in the activity of dopaminergic amacrine cells, at night. Together, these experiments provide the first indication of the function of retinopetal axons in mammalian retinas. ^ |
Identificador |
http://digitalcommons.library.tmc.edu/dissertations/AAI3131472 |
Idioma(s) |
EN |
Publicador |
DigitalCommons@The Texas Medical Center |
Fonte |
Texas Medical Center Dissertations (via ProQuest) |
Palavras-Chave | #Biology, Neuroscience |
Tipo |
text |