39 resultados para The selfish gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasmid-encoded, constitutively produced $\beta$-lactamase gene from Enterococcus faecalis strain HH22 was genetically characterized. A restriction endonuclease map of the 5.1 kb EcoRI fragment encoding the enterococcal $\beta$-lactamase was prepared and compared with the restriction map of a cloned staphylococcal $\beta$-lactamase gene (from the naturally-occurring staphylococcal $\beta$-lactamase plasmid pI258). Comparison and hybridization studies showed that there were identical restriction sites in the region of the $\beta$-lactamase structural gene but not in the region surrounding this gene. Also the enterococcal $\beta$-lactamase plasmid did not encode resistance to mercury or cadmium which is encoded by the small, transducible staphylococcal $\beta$-lactamase plasmids. The nucleotide sequence of the enterococcal gene was shown to be identical to the published sequences of three of four staphylococcal type A $\beta$-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred-forty nucleotides upstream of the $\beta$-lactamase start codon were also determined for the inducible staphylococcal $\beta$-lactamase gene on pI258; this sequence was identical to that of the constitutively expressed enterococcal gene indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The gene for the enterococcal $\beta$-lactamase and an inducible staphylococcal $\beta$-lactamase were each cloned into a shuttle vector and then transformed into enterococcal and staphylococcal recipients. The major difference between the two host backgrounds was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene but no qualitative difference was seen between the two genera. Also a difference in the level of resistance to ampicillin was seen between the two backgrounds with the cloned enzymes by MIC and time-kill studies. The location of the enzyme was found to be host dependent since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell bound enzyme in the enterococcus. Based on the identity of the enterococcal $\beta$-lactamase and several staphylococcal $\beta$-lactamases, these data suggest recent spread of $\beta$-lactamase to enterococci and also suggest loss of a functional repressor. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BCR gene is involved in the pathogenesis of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Typically, the 5$\sp\prime$ portion of BCR on chromosome 22 becomes fused to a 5$\sp\prime$ truncated ABL gene from chromosome 9 resulting in a chimeric BCR-ABL gene. To investigate the role of the BCR gene product, a number of BCR peptide sequences were used to generate anti-BCR antibodies for detection of BCR and BCR-ABL proteins. Since both BCR and ABL proteins have kinase activity, the anti-BCR antibodies were tested for their ability to immunoprecipitate BCR and BCR-ABL proteins from cellular lysates by use of an immunokinase assay. Antisera directed towards the C-terminal portions of P160 BCR, sequences not present in BCR-ABL proteins, were capable of co-immunoprecipitating P210 BCR-ABL from the Ph$\sp1$- positive cell line K562. Re-immunoprecipitation studies following complete denaturation showed that C-terminal BCR antisera specifically recognized P160 BCR but not P210 BCR-ABL. These and other results indicated the presence of a P160 BCR/P210 BCR-ABL protein complex in K562 cells. Experiments performed with Ph$\sp1$-positive ALL cells and uncultured Ph$\sp1$-positive patient white blood cells established the general presence of BCR/BCR-ABL protein complexes in BCR-ABL expressing cells. However, two cell lines derived from Ph$\sp1$-positive patients lacked P160 BCR/P210 BCR-ABL complexes. Lysates from one of these cell lines mixed with lysates from a cell line that expresses only P160 BCR failed to generate BCR/BCR-ABL protein complexes in vitro indicating that P160 BCR and P210 BCR-ABL do not simply oligomerize.^ Two-dimensional tryptic maps were performed on both BCR and BCR-ABL proteins labeled in vitro with $\sp{32}$P. These maps indicate that the autophosphorylation sites in BCR-ABL proteins are primarily located within BCR exon 1 sequences in both P210 and P185 BCR-ABL, and that P160 BCR is phosphorylated in trans in similar sites by the activated ABL kinase of both BCR-ABL proteins. These results provide strong evidence that P160 BCR serves as a target for the BCR-ABL oncoprotein.^ K562 cells, induced to terminally differentiate with the tumor promoter TPA, show a loss of P210 BCR-ABL kinase activity 12-18 hours after addition of TPA. This loss coincides with the loss of activity in P160 BCR/P210 BCR-ABL complexes but not with the loss of the P210 BCR-ABL, suggesting the existence of an inactive form of P210 BCR-ABL. However, a degraded BCR-ABL protein served as the kinase active form preferentially sequestered within the remaining BCR/BCR-ABL protein complex.^ The results described in this thesis form the basis for a model for BCR-ABL induced leukemias which is presented and discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic evidence has indicated that the segmentation gene runt plays a key role in regulating gene expression of the pair-rule genes hairy, even-skipped, and fushi tarazu. In contrast to other pair-rule genes, sequence data of the runt open reading frame did not reveal homologies to DNA-binding motifs of known transcriptional regulatory proteins. This thesis project examined several properties of the runt gene based on the sequence of the transcription unit, including the subcellular localization of the protein in vivo, its ability to bind DNA, and the functionality of a putative nucleotide binding domain.^ A runt-specific antibody was generated and used to demonstrate that runt is localized in the nucleus. Since the precise overlap of the pair-rule stripes is thought to be critical for the determination of cellular identity along the anterior-posterior axis, phasing of early runt expression in the blastoderm was examined with regard to the segmentation genes hairy, even-skipped, and fushi tarazu. runt was also expressed at later stages of embryogenesis, including expression in neuroblasts, and ganglion mother cells of the developing nervous system. Expression at this stage was required for the subsequent formation of specific neurons and runt was extensively expressed in the central and peripheral nervous systems.^ Several experiments were done to address the biochemical function of the runt protein. A direct interaction of runt with DNA was first examined. Although bacterial expressed runt was found to bind dsDNA-cellulose, subsequent experiments failed to detect sequence-specific interactions with DNA. Inter-species conservation of the putative nucleotide binding domain suggested that this region was functionally important, and runt protein bound a labeled ATP analog with high affinity in vitro. Finally, the effect of substitution of a critical residue of the nucleotide binding domain on runt activity was examined in vivo. Ectopic expression of the mutant protein indicated that this conserved substitution altered, but did not eliminate, runt activity as evaluated by segmentation phenotype and viability. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the differentiated skeletal muscle phenotype is a process that appears to occur in at least two stages. First, pluripotent stem cells become committed to the myogenic lineage. Although undifferentiated and capable of continued proliferation, determined myoblasts are restricted to a single developmental fate. Upon receiving the appropriate environmental signals, these determined myoblasts withdraw from the cell cycle, fuse to form multi-nucleated myotubes, and begin to express a battery of muscle-specific gene products that make up the functional and contractile apparatus of the muscle. This project is aimed at the identification and characterization of factors that control the determination and differentiation of myogenic cells. We have cloned a cDNA, called myogenin, that plays an important role in these processes. Myogenin is expressed exclusively in skeletal muscle in vivo and myogenic cell lines in vitro. Its expression is sharply upregulated during differentiation. When constitutively expressed in fibroblasts, myogenin converts these cells to the myogenic lineage. Transfected cells behave as myogenic tissue culture cells with respect to the genes they express, the way they respond to environmental cues, and are capable of fusing to form multinucleated myotubes. Sequence analysis showed that this cDNA has homology to a family of transcription factors in a region of 72 amino acids known as the basic helix-loop-helix motif. This domain appears to mediate binding to a DNA sequence element known as an E-box (CANNTG) essential for the activity of the enhancers of many muscle-specific genes.^ Analysis of myogenin in tissue culture cells showed that its expression is responsive to many of the environmental cues, such as the presence of growth factors and oncogenes, that modulate myogenesis. In an attempt to identify the cis- and trans-elements that control myogenin expression and thereby understand what factors are responsible for the establishment of the myogenic lineage, we have cloned the myogenin gene. After analysis of the gene structure, we constructed a series of reporter constructs from the 5$\prime$ upstream sequence of the myogenin gene to determine which cis-acting sequences might be important in myogenin regulation. We found that 184 nucleotides of the 5$\prime$ sequence was sufficient to direct high-level muscle-specific expression of the reporter gene. Two sequence elements present in the 184 fragment, an E-box and a MEF-2 site, have been shown previously to be important in muscle-specific transcription. Mutagenesis of these sites revealed that both sites are necessary for full activity of the myogenin promoter, and suggests that a complex hierarchy of transcription factors control myogenic differentiation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the fore-front of cancer research, gene therapy offers the potential to either promote cell death or alter the behavior of tumor-cells. One example makes use of a toxic phenotype generated by the prodrug metabolizing gene, thymidine kinase (HSVtk) from the Herpes Simplex Virus. This gene confers selective toxicity to a relatively nontoxic prodrug, ganciclovir (GCV). Tumor cells transduced with the HSVtk gene are sensitive to 1-50 $\mu$M GCV; normal tissue is insensitive up to 150-250 $\mu$M GCV. Utilizing these different sensitivities, it is possible to selectively ablate tumor cells expressing this gene. Interestingly, if a HSVtk$\sp+$ expressing population is mixed with a HSVtk$\sp-$ population at high density, all the cells are killed after GCV administration. This phenomenon for killing all neighboring cells is termed the "bystander effect", which is well documented in HSVtk$\sp-$ GCV systems, though its exact mechanism of action is unclear.^ Using the mouse colon carcinoma cell line CT26, data are presented supporting possible mechanisms of "bystander effect" killing of neighboring CT26-tk$\sp-$cells. A major requirement for bystander killing is the prodrug GCV: as dead or dying CT26tk$\sp+$ cells have no toxic effect on neighboring cells in its absence. In vitro, it appears the bystander effect is due to transfer of toxic GCV-metabolites, through verapamil sensitive intracellular-junctions. Additionally, possible transfer of the HSVtk enzyme to bystander cells after GCV addition, may play a role in bystander killing. A nude mouse model suggests that in a 50/50 (tk$\sp+$/tk$\sp-$) mixture of CT26 cells the bystander eradication of tumors does not involve an immune component. Additionally in a possible clinical application, the "bystander effect" can be directly exploited to eradicate preexisting CT26 colon carcinomas in mice by intratumoral implantation of viable or lethally irradiated CT26tk$\sp+$ cells and subsequent GCV administration. Lastly, an application of this toxic phenotype gene to a clinical marking protocol utilizing a recombinant adenoviral vector carrying the bifunctional protein GAL-TEK to eradicate spontaneously-arisen or vaccine-induced fibrosarcomas in cats is demonstrated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies to elucidate the function of vitamin D have demonstrated an important role in regulating bone-related cells, including osteoblasts and osteoclasts. A seemingly paradoxical observation is that 1,25(OH)$\sb2$D$\sb3$, the active metabolite of vitamin D, stimulates bone resorption, yet regulates transcription of genes expressed by osteoblasts. One mechanism that could explain these actions is the upregulation of transcription of osteoblast-specific genes. These gene products could then act as effectors to influence osteoclastic activity. We hypothesized that molecular signals could be deposited directly into the mineralized matrix in the form of noncollagenous proteins, such as osteopontin (OPN). The structure, biosynthesis and localization of OPN suggest that it could function to mediate the molecular "cross talk" between osteoblasts and osteoclasts in response to 1,25(OH)$\sb2$D$\sb3$. To begin to address this hypothesis, elucidation of the molecular mechanisms of action involved in the transactivation of OPN by 1,25(OH)$\sb2$D$\sb3$ is essential.^ In the present study, the rat opn gene was isolated and characterized. Functional analysis by transient transfection of the 5$\sp\prime$ flanking sequences of the rat opn gene fused to the luciferase gene demonstrated that OPN is transcriptionally upregulated by 1,25(OH)$\sb2$D$\sb3$, mediated through two vitamin D response elements (VDRE). Both proximal and distal VDREs are structurally similar (two imperfect direct repeats separated by a 3 nucleotide spacer) and bind protein complexes that include the VDR and retinoid-X receptor (RXR). Isolated VDRE expression constructs produce functional activity of equivalent magnitude of responsiveness to 1,25(OH)$\sb2$D$\sb3$. However, expression constructs containing either VDRE and at least 200 bp of 5$\sp\prime$ and 3$\sp\prime$ flanking sequence demonstrated that the distal VDRE produces an amplitude of response significantly higher than the proximal VDRE. We conclude that the transcriptional upregulation of the opn gene by 1,25(OH)$\sb2$D$\sb3$ involves the transactivation of two VDREs, while maximal responsiveness requires interaction of the VDREs with additional cis-elements contained in the 5$\sp\prime$ sequence. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental problem in developmental biology concerns the mechanisms involved in the establishment of the embryonic axis. We are studying Xenopus nuclear factor 7 (xnf7) which we believe to be involved in dorsal-ventral patterning in Xenopus laevis. Xnf7 is a maternal gene product that is retained in the cytoplasm during early embryogenesis until the mid-blastula transition (MBT) when it reenters the nuclei. It is a member of a novel zinc finger proteins, the B-box family, consisting mainly of transcription factors and protooncogenes.^ The xnf7 gene is reexpressed during embryogenesis at the gastrula-neurula stage of development, with its zygotic expression limited to the central nervous system (CNS). In this study we showed that there are two different cDNAs coding for xnf7, xnf7-O and xnf7-B. They differ by 39 amino acid changes scattered throughout the cDNA. The expression of both forms of xnf7 is limited primarily to the central nervous system (CNS) and dorsal axial structures during later stages of embryogenesis.^ In order to study the spatial and temporal regulation of the gene, we screened a Xenopus genomic library using part of xnf7 cDNA as a probe. A genomic clone corresponding to the xnf7-O type was isolated, its 5$\sp\prime$ putative regulatory region sequenced, and its transcriptional initiation site mapped. The putative promoter region contained binding sites for Sp1, E2F, USF, a Pu box and AP1. CAT/xnf7 fusion genes were constructed containing various 5$\sp\prime$ deleted regions of the xnf7 promoter linked to a CAT (Chloramphenicol Acetyl Transferase) reporter vector. These constructs were injected into Xenopus oocytes and embryos to study the regions of the xnf7 promoter responsible for basal, temporal and spatial regulation of the gene. The activity of the fusion genes was measured by the conversion of chloramphenicol to its acetylated forms, and the spatial distribution of the transcripts by whole mount in situ hybridization. We showed that the elements involved in basal regulation of xnf7 lie within 121 basepairs upstream of the transcriptional inititiation site. A DNase I footprint analysis performed using oocyte extract showed that a E2F and 2 Sp1 sites were protected. During development, the fusion genes were expressed following the MBT, in accordance with the timing of the endogenous xnf7 gene. Spatially, the expression of the fusion gene containing 421 basepairs of the promoter was localized to the dorsal region of the embryo in a pattern that was almost identical to that detected with the endogenous transcripts. Therefore, the elements involved in spatial and temporal regulation of the xnf7 gene during development were contained within 421 basepairs upstream of the transcriptional initiation site. Future work will further define the elements involved in the spatial and temporal regulation and the trans-factors that interact with them. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transglutaminases are a family of calcium-dependent enzymes, that catalyze the covalent cross-linking of proteins by forming $\varepsilon(\gamma$-glutamyl)lysine isopeptide bonds. In order to investigate the molecular mechanisms regulating the expression of the tissue transglutaminase gene and to determine its biological functions, the goal of this research has been to clone and characterize the human tissue transglutaminase promoter. Thirteen clones of the tissue transglutaminase gene were obtained from the screening of a human placental genomic DNA library. A 1.74 Kb fragment derived from DNA located immediately upstream of the translation start site was subcloned and sequenced. Sequence analysis of this DNA fragment revealed that it contains a TATA box (TATAA), a CAAT box (GGACAAT), and a series of potential transcription factor binding sites and hormone response elements. Four regions of significant homology, a GC-rich region, a TG-rich region, an AG-rich region, and HR1, were identified by aligning 1.8 Kb of DNA flanking the human, mouse, and guinea pig tissue transglutaminase genes.^ To measure promoter activity, we subcloned the 1.74 Kb fragment of the tissue transglutaminase gene into a luciferase reporter vector to generate transglutaminase promoter/luciferase reporter constructs. Transfection experiments showed that this DNA segment includes a functional promoter with high constitutive activity. Deletion analysis revealed that the SP1 sites or corresponding sequences contribute to this activity. We investigated the role of DNA methylation in regulating the activity of the promoter and found that in vitro methylation of tissue transglutaminase promoter/luciferase reporter constructs suppressed their basal activity. Methylation of the promoter is inversely correlated with the expression of the tissue transglutaminase gene in vivo. These results suggest that DNA methylation may be one of the mechanisms regulating the expression of the gene. The tumor suppressor gene product p53 was also shown to inhibit the activity of the promoter, suggesting that induction of the tissue transglutaminase gene is not involved in the p53-dependent programmed cell death pathway. Although retinoids regulate the expression of the tissue transglutaminase gene in vivo, retinoid-inducible activity can not be identified in 3.7 Kb of DNA 5$\sp\prime$ to the tissue transglutaminase gene.^ The structure of the 5$\sp\prime$ end of the tissue transglutaminase gene was mapped. Alignment analysis of the human tissue transglutaminase gene with other human transglutaminases showed that tissue transglutaminase is the simplest member of transglutaminase superfamily. Transglutaminase genes show a conserved core of exons and introns but diverse N-terminuses and promoters. These observations suggest that key regulatory sequences and promoter elements have been appended upstream of the core transglutaminase gene to generate the diversity of regulated expression and regulated activity characteristic of the transglutaminase gene family. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouse $\alpha$2(I) collagen gene is specifically expressed in a limited number of cell types in the body including fibroblasts and osteoblasts. We had previously shown that a promoter containing the sequences between $-$350 and +54 bp was expressed at low levels in a cell- and tissue-specific fashion in transgenic mice. Further studies suggested that the sequence between $-$315 and $-$284 bp could mediate cell- and tissue-specific expression of reporter genes in cell culture and in transgenic mice. We report here characterization of the proteins binding to this segment and propose a model for the cell-specific expression conferred by this sequence. In this study we also identified a strong enhancer for the mouse $\alpha$2(I) collagen gene located approximately 13.5 to 19.5 kb upstream of the transcriptional start site. This enhancer segment is characterized by the presence of three cell-specific hypersensitive sites and can drive high levels of cell-specific expression of a heterologous 220-bp mouse $\alpha$1(I) collagen promoter. In the course of this study, we identified a novel zinc finger transcription factor (designated murine epithelial zinc finger, mEZF) which was transiently expressed in the mesenchymal cells which give rise to the skeletal primordia and the metanephric kidney during the early stages of embryogenesis. In newborn mice, the mEZF gene is expressed at high levels in differentiated epithelial cells of the skin, oral mucosa, tongue, esophagus, stomach and colon. Chromosomal mapping suggested that the mEZF gene mapped to mouse Chromosome 4 and that the human homolog of mEZF would likely map to human Chromosome 9q31. This region of the human genome contains tumor suppressor genes for basal cell carcinomas of the skin as well as for squamous cell carcinomas of various organs. We cloned and characterized the human homolog of mEZF and mapped its chromosomal position as a first step in determining whether or not this gene plays a role in the development of these tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that is the leading cause of inherited blindness worldwide. Characteristic features of the disease include night blindness, progressive loss of visual fields, and deposition of pigment on the retina in a bone spicule-like pattern. RP is marked by extreme genetic heterogeneity with at least 19 autosomal dominant, autosomal recessive and X-linked loci identified. RP10, which maps to chromosome 7q, was the fifth autosomal dominant RP locus identified, and accounts for the early-onset disease in two independent families. Extensive linkage and haplotype analyses have been performed in these two families which have allowed the assignment of the disease locus to a 5-cM region on chromosome 7q31.3. In collaboration with Dr. Eric Green (National Center for Human Genome Research, National Institutes of Health), a well-characterized physical map of the region was constructed which includes YAC, BAC and cosmid coverage. The entire RP10 critical region resides within a 9-Mb well-characterized YAC contig. These physical maps not only provided the resources to undertake the CAIGES (cDNA amplification for identification of genomic expressed sequences) procedure for identification of retinal candidate genes within the critical region, but also identified a number of candidate genes, including transducin-$\gamma$ and blue cone pigment genes. All candidate genes examined were excluded. In addition, a number of ESTs were mapped within the critical region. EST20241, which was isolated from an eye library, corresponded to the 3$\sp\prime$ region of the ADP-ribosylation factor (ARF) 5 gene. ARF5, with its role in vesicle transport and possible participation in the regulation of the visual transduction pathway, became an extremely interesting candidate gene. Using a primer walking approach, the entire 3.2 kb genomic sequence of the ARF5 gene was generated and developed intronic primers to screen for coding region mutations in affected family members. No mutations were found in the ARF5 gene, however, a number of additional ESTs have been mapped to the critical region, and, as the large-scale sequencing projects get underway, megabases of raw sequence data from the RP10 region are becoming available. These resources will hasten the isolation and characterization of the RP10 gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic analysis is a powerful method for analyzing the function of specific genes in development. I sought to identify novel genes in the mouse using a genetic analysis relying on the expression pattern and phenotype of mutated genes. To this end, I have conducted a gene trap screen using the vector $\rm SA\beta geo,$ a promoterless DNA construct that encodes a fusion protein with lacZ and neomycin resistance activities. Productive integration and expression of the $\beta$geo protein in embryonic stem (ES) cells requires integration into an active transcription unit. The endogenous regulatory elements direct reporter gene expression which reflects the expression of the endogenous gene. Of eight mouse lines generated from gene trap ES cell clones, four showed differential regulation of $\beta$geo activity during embryogenesis. These four were analyzed in more detail.^ Three of the lines RNA 1, RNA2 and RNA 3 had similar expression patterns, within subsets of cells in sites of embryonic hematopoiesis. Cloning of the trapped genes revealed that all three integrations had occurred within 45S rRNA precursor transcription units. These results imply that there exists in these cells some mechanism responsible for the efficient production of the $\beta$geo protein from an RNA polymerase I transcript that is not present in most of the cells in the embryo.^ The fourth line, GT-2, showed widespread, dynamic expression. Many of the sites of expression were important classic embryonic induction systems. Cloning of the sequences fused to the $5\sp\prime$ end of the $\beta$geo sequence revealed that the trapped gene contained significant sequence homology with a previously identified human sequence HumORF5. An open reading frame of this sequence is homologous to a group of eukaryotic proteins that are members of the RNA helicase superfamily I.^ Analysis of the gene trap lines suggests that potentially novel developmental mechanisms have been uncovered. In the case of RNA 1, 2 and 3, the differential production of ribosomal RNAs may be required for differentiation or function of the $\beta$geo positive hematopoietic cells. In the GT-2 line, a previously unsuspected temporal and spatial regulation of a putative RNA helicase implies a role for this activity during specific aspects of mouse development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumor 1 gene (WT1) encodes a zinc-finger transcription factor and is expressed in urogenital, hematopoietic and other tissues. It is expressed in a temporal and spatial manner in both embryonic and adult stages. To obtain a better understanding of the biological function of WT1, we studied two aspects of WT1 regulation: one is the identification of tissue-specific cis-regulatory elements that regulate its expression, the other is the downstream genes which are modulated by WT1.^ My studies indicate that in addition to the promoter, other regulatory elements are required for the tissue specific expression of this gene. A 259-bp hematopoietic specific enhancer in intron 3 of the WT1 gene increased the transcriptional activity of the WT1 promoter by 8- to 10-fold in K562 and HL60 cells. Sequence analysis revealed both GATA and c-Myb motifs in the enhancer fragment. Mutation of the GATA motif decreased the enhancer activity by 60% in K562 cells. Electrophoretic mobility shift assays showed that both GATA-1 and GATA-2 proteins in K562 nuclear extracts bind to this motif. Cotransfection of the enhancer containing reporter construct with a GATA-1 or GATA-2 expression vector showed that both GATA-1 and GATA-2 transactivated this enhancer, increasing the CAT reporter activity 10-15 fold and 5-fold respectively. Similar analysis of the c-Myb motif by cotransfection with the enhancer CAT reporter construct and a c-Myb expression vector showed that c-Myb transactivated the enhancer by 5-fold. A DNase I-hypersensitive site has been identified in the 258 bp enhancer region. These data suggest that GATA-1 and c-Myb are responsible for the activity of this enhancer in hematopoietic cells and may bind to the enhancer in vivo. In the process of searching for cis-regulatory elements in transgenic mice, we have identified a 1.0 kb fragment that is 50 kb downstream from the promoter and is required for the central nervous system expression of WT1.^ In the search for downstream target genes of WT1, we noted that the proto-oncogene N-myc is coexpressed with the tumor suppressor gene WT1 in the developing kidney and is overexpressed in many Wilms' tumors. Sequence analysis revealed eleven consensus WT1 binding sites located in the 1 kb mouse N-myc promoter. We further showed that the N-myc promoter was down-regulated by WT1 in transient transfection assays. Electrophoretic mobility shift assays showed that oligonucleotides containing the WT1 motifs could bind WT1 protein. Furthermore, a Denys-Drash syndrome mutant of WT1, R394W, that has a mutation in the DNA binding domain, failed to repress the N-myc promoter. This suggests that the repression of the N-myc promoter is mediated by DNA binding of WT1. This finding helps to elucidate the relationship of WT1 and N-myc in tumorigenesis and renal development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PAX6, a member of the paired-type homeobox gene family, is expressed in a partially and temporally restricted pattern in the developing central nervous system, and its mutation is responsible for human aniridia (AN) and mouse small eye (Sey). The objective of this study was to characterize the PAX6 gene regulation at the transcriptional level, and thereby gain a better understanding of the molecular basis of the dynamic expression pattern and the diversified function of the human PAX6 gene.^ Initially, we examined the transcriptional regulation of the PAX6 gene by transient transfection assays and identified multiple cis-regulatory elements that function differently in different cell lines. The transcriptional initiation site was identified by RNase protection and primer extension assays. Examination of the genomic DNA sequence indicated that the PAX6 promoter has a TATA like-box (ATATTTT) at $-$26 bp, and two CCAAT-boxes are located at positions $-$70 and $-$100 bp. A 38 bp ply (CA) sequence was located 992 bp upstream from the initiation site. Transient transfection assays in glioblastoma cells and leukemia cells indicate that a 92 bp region was required for basal level PAX6 promoter activity. Gel retardation assays showed that this 92 bp sequence can form four DNA-protein complexes which can be specifically competed by a 31-mer oligonucleotide containing a PAX6 TATA-like sequence or an adenovirus TATA box. The activation of the promoter is positively correlated with the expression of PAX6 transcripts in cells tested.^ Based on the results obtained from the in vitro transfection assays, we did further dissection assay and functional analysis in both cell-culture and transgenic mice. We found that a 5 kb upstream promoter sequence is required for the tissue specific expression in the forebrain region which is consistent with that of the endogenous PAX6 gene. A 267 bp cell-type specific repressor located within the 5 kb fragment was identified and shown to direct forebrain specific expression. The cell-type specific repressor element has been narrowed to a 30 bp region which contains a consensus E-box by in vitro transfection assays. The third regulatory element identified was contained in a 162 bp sequence (+167 to +328) which functions as a midbrain repressor, and it appeared to be required for establishing the normal expression pattern of the PAX6 gene. Finally, a highly conserved 216 bp sequence identified in intron 4 exhibited as a spinal cord specific enhancer. And this 216 bp cis-regulatory element can be used as a marker to trace the differentiation and migration of progenitor cells in the developing spinal cord. These studies show that the concerted action of multiple cis-acting regulatory elements located upstream and downstream of the transcription initiation site determines the tissue specific expression of PAX6 gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^