69 resultados para PROSTATE CANCER-ASSOCIATED STROMAL CELLS
Resumo:
The use of proteasome inhibitors in cancer has received much attention with the recent FDA approval of bortezomib (Velcade/PS-341). However, in the chronic lymphocytic leukemia (CLL) clinical trial, bortezomib was not as effective as it was in vitro. Accordingly, results in prostate cancer were not remarkable, although regression of lymphadenopathy was observed. This response was also seen in CLL. ^ The proteasome degrades ∼80% of intracellular proteins. Although specific pathways affected by proteasome inhibitors are known, there are still unidentified mechanisms by which they induce apoptosis. The efficacy and mechanism of action of the reversible proteasome inhibitor bortezomib were compared to the novel irreversible inhibitor NPI-0052 in this study, and their mechanisms of action in CLL and prostate cancer were examined. ^ NPI-0052 inhibited proteasome activity and induced apoptosis with more rapid kinetics than bortezomib in CLL. Inhibition of proteasome activity with NPI-0052 was also more durable. Interestingly, bortezomib is cleared from the serum within 15min, which is insufficient time for bortezomib to effectively inhibit the proteasome. However, only 5min exposure was needed for NPI-0052 to produce maximal proteasome inhibition. The data suggest that bortezomib's slow kinetics and reversible nature limit its potential in vivo and the use of NPI-0052 should be considered. ^ In examining the mechanism(s) by which bortezomib and NPI-0052 induce apoptosis in CLL, both were found to elicit the ER stress pathway. A stromal cell co-culture system prevented apoptosis induced by both proteasome inhibitors, suggesting that if such factors in vivo were responsible for reducing bortezomib's efficacy, NPI-0052 would not prove useful either. Finally, Lyn, a Src family kinase (SFK), was decreased in response to bortezomib and NPI-0052 and correlated with apoptosis induction in CLL and prostate cancer. Both proteasome inhibitors specifically targeted Lyn rather than SFKs in general. ^ SFKs are overexpressed in cancer and involved in cell signaling, survival, and metastasis. In prostate cancer cells, both proteasome inhibition and Lyn-silencing significantly inhibited migration. Preliminary evidence also suggested that Lyn downregulation decreases invasion potential. Together, these data suggest that proteasome inhibitors are potential candidates for anti-metastasic therapy and further investigation is warranted for the use of Lyn-targeted therapy to treat metastases. ^
Resumo:
Introduction. Distant metastasis remains the leading cause of death among prostate cancer patients. Several genetic susceptibility loci associated with Prostate cancer have been identified by the Genome Wide Association Studies (GWAS). To date, few studies have explored the ability of these SNPs to identify metastatic prostate cancer. Based on the identification of genetic variants as predictors of aggressive disease, a case comparison study of prostate cancer patients was designed to explore the association of 96 GWAS single nucleotide polymorphisms (SNPs) with metastatic disease. ^ Method. 1242 histologically confirmed prostate cancer patients, with and without metastatic disease, were enrolled into the study. Data were collected from personal interviews, hospital database and abstraction of medical records. Ninety six SNPs identified from GWAS studies based on their associations with prostate cancer risk were genotyped in the study population. Univariate and multivariate logistic regression analyses were used to explore the relationships of the variants with metastatic prostate cancer in Whites and African American men. ^ Results. Four SNPs showed independent associations with metastatic prostate cancer (rs721048 in EHBP1 (2p15), rs3025039 in VEGF (6p12), rs11228565 in Intergenic(11q13.2) and rs2735839 in KLK3(19q13.33)) in the White population. For SNP rs2735839 in KLK3, genotype GA was 1.71 times as likely to be associated with metastatic prostate cancer diagnosis as genotype AA after adjusting for other significant SNPs and covariates (95% CI, 1.12-2.60; p=0.012). In men of African descent, three SNPs: rs1512268 in NKX3-1(8p21.2), rs12155172 in intergenic (7p15.3) & rs10486567 in JAZF1 (7p15.2) were positively associated with metastatic disease in the multivariate analysis. The strongest SNP was rs1512268 heterozygous genotype AG in NKX3-1(8p21.2) which was associated with 3.97-fold increased risk of metastatic prostate cancer diagnosis (95% CI, 1.69-9.34; p =0.002). ^ Conclusion. Genetic variants associated with metastatic prostate cancer were different in Whites and African American men. Given the high mortality rate recorded in men diagnosed with metastatic prostate tumor, further studies are needed to validate associations and establish their clinical application.^
Resumo:
The most common molecular alterations observed in prostate cancer are increased bcl-2 protein expression and mutations in p53. Understanding the molecular alterations associated with prostate cancer are critical for successful treatment and designing new therapeutic interventions. Hormone-ablation therapy remains the most effective nonsurgical treatment; however, most patients will relapse with hormone-independent, refractory disease. This study addresses how hormone-ablation therapy may increase bcl-2, develops a transgenic model to elucidate the role of bcl-2 multistep prostate carcinogenesis, and assesses how bcl-2 may confer resistance to cell death induction using adenoviral wild-type p53 gene therapy. ^ Two potential androgen response elements were identified in the bcl-2 promoter. Bcl-2 promoter luciferase constructs were transfected into the hormone- sensitive LNCaP prostate cell line. In the presence of dihydrotestosterone, the activity of one bcl-2 promoter luciferase construct was repressed 40% compared to control cells grown in charcoal-stripped serum. Additionally, it was demonstrated that both bcl-2 mRNA and protein were downregulated in the LNCaP cells grown in the presence DHT. This suggests that DHT represses bcl-2 expression through possible direct and indirect mechanisms and that hormone-ablation therapy may actually increases bcl-2 protein. ^ To determine the role of bcl-2 in prostate cancer progression in vivo, probasin-bcl-2 mice were generated where human bcl-2 was targeted to the prostate. Increased bcl-2 expression rendered the ventral prostate more resistant to apoptosis induction following castration. When the probasin-bcl-2 mice were crossed with TRAMP mice, the latency to tumor formation was decreased. The expression of bcl-2 in the double transgenic mice did not affect the incidence of metastases. The double transgenic model will facilitate the study of in vivo effects of specific genetic lesions during the pathogenesis of prostate cancer. ^ The effects of increased bcl-2 protein on wild-type adenoviral p53-mediated cell death were determined in prostatic cell lines. Increased bcl-2 protected PC3 and DU145 cell lines, which possess mutant p53, from p53-mediated cell death and reductions in cell viability. Bcl-2 did not provide the same protective effect in LNCaP cell line, which expresses wild-type p53. This suggests that the ability of bcl-2 to protect against p53-mediated cell death is dependent upon the endogenous status of p53. ^
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.
Resumo:
The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^
Resumo:
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer mortality in American men. The distinction between those cases of prostate cancer destined to progress rapidly to lethal metastatic disease and those with little likelihood of causing morbidity and mortality is a major goal of current research. Some type of diagnostic method is urgently needed to identify which histological prostate cancers have completed the progression to a stage that will produce a life-threatening disease, thus requiring immediate therapeutic intervention. The objectives of this dissertation are to delineate a novel genetic region harboring tumor suppressor gene(s) and to identify a marker for prostate tumorigenesis. I first established an in vitro cell model system from a human prostate epithelial cells derived from tissue fragments surrounding a prostate tumor in a patient with prostatic adenocarcinoma. Since chromosome 5 abnormality was present in early, middle and late passages of this cell model system, I examined long-term established prostate cancer cell lines for this chromosome abnormality. The results implicated the region surrounding marker D5S2068 as the locus of interest for further experimentation and location of a tumor suppressor gene in human prostate cancer. ^ Cancer is a group of complex genetic diseases with uncontrolled cell; division and prostate cancer is no exception. I determined if telomeric DNA, and telomerase activity, alone or together, could serve as biomarkers of prostate tumorigenesis. I studied three newly established human prostate cancer cell lines and three fibroblast cell cultures derived from prostate tissues. In conclusion, my data reveal that in the presence of telomerase activity, telomeric repeats are maintained at a certain optimal length, and analysis of telomeric DNA variations might serve as early diagnostic and prognostic biomarkers for prostate cancer. (Abstract shortened by UMI.)^
Resumo:
Frequent loss of heterozygosity (LOH) at specific chromosomal regions are highly associated with the inactivation of tumor suppressor genes (TSGs) (Weinberg, 1991; Bishop, 1989). Chromosome 8p is the most frequently reported site of LOH (∼60%) in prostate cancer (PC), suggesting that there may be inactivated TSG(s) involved in PC on chromosome 8p. (Bergerheim et. al., 1991; Kagan et. al., 1995). In order to identify the smallest common regions of frequent LOH (SCLs) on chromosome 8, we screened 52 PC patient/tumor samples with 39 polymorphic markers in successive screenings. In the course of refining the SCLs, we identified 3 tumors with >6 Mb homozygous deletions (HZDs) at 8p22 and 8p21, suggesting the presence of candidate TSGs at both loci. These HZDs spanned the two SCLs at 8p22 (46%) and 8p21 (45%). The SCLs were narrowed to 3.2 cM at 8p22 and less than 3 cM at 8p21. ^ In order to identify candidate TSGs within the SCLs on 8p, two approaches were used. In the candidate gene approach, thirty genes that mapped to the SCLs were evaluated for expression in normal prostate and in PC cell lines. One of the candidate genes, Clusterin, showed decreased expression in 4/7 (57%) prostate cancer cell lines by Northern blot analysis. Clusterin will be further examined as a candidate TSG. ^ The second approach involved utilizing subtractive hybridization and hybrid affinity capture to generate pools of expressed sequence tags (ESTs) enriched for genes that are downregulated or deleted in PC and that map to specific regions of interest. We took advantage of a prostate cancer cell line (PC3) with a known HZD of a candidate TSG, CTNNA1 on 5q31, to develop and validate a model system. We then developed subtracted libraries enriched for 8p22 and 8p21 ESTs by this method, using two cell lines, MDAPCa-2b and PC3. The ESTs were cloned, and 40 were sequenced and evaluated for expression in normal prostate and PC cell lines. Three ESTs from the subtracted libraries, C2, C17 and F12, showed decreased expression in 29–57% of the prostate tumor cell lines studied, and will be further examined as candidate TSGs. ^
Resumo:
Prostatic carcinoma is the most prevalent cancer detected in men. Bortezomib is the first proteasome inhibitor to undergo clinical trials for several forms of cancer. Although we know this class of agent preferentially kills cancer cells, our knowledge of proteasome inhibition mechanisms of induced death is far from complete. We investigated the effects of bortezomib on the LNCaP-Pro5 (Pro5) and PC-3-Pro4 (Pro4) human prostatic adenocarcinoma cells lines. We showed a reduction in proliferation and an increase in DNA fragmentation, caspase 3 activity, and cell surface phosphatidyl serine exposure. The bortezomib-treated tumors from both cell lines were dramatically reduced, and apoptosis was induced. There was also a reduction in proliferation in the treated tumors from both cells lines. We looked at changes in the levels of the proangiogenic factors VEGF, IL-8 and bFGF in vitro and in vivo. Although there was a reduction in the levels of VEGF produced by the Pro5 cell line and tumor due to bortezomib, no similar observations were made for the other angiogenic factors or in the Pro4 cells. We investigated the effects of bortezomib on p53 in the Pro5 cell line. Bortezomib induced strong stabilization of p53. It did not promote phosphorylation on serines 15 and 24 and p53 remained bound to its inhibitor, mdm2. Nonetheless, confocal microscopy revealed that bortezomib stimulated p53 translocation to the nucleus and enhanced p53 DNA binding, accumulation of p53-dependant transcripts, and activation of a p53-responsive reporter gene. Furthermore, stable transfectants of LNCaP-Pro5 expressing the p53 inhibitor, HPV-E6, displayed reduced bortezomib-induced p53 activation and cell death. Our data shows bortezomib to induce antitumor effects in the human Pro4 and Pro5 prostatic adenocarcinoma cell lines by the direct induction of apoptosis. The drug also causes a reduction in cell proliferation and mean vessel density while modulating the secretion of proangiogenic factors. Although we show that proteasome inhibition stimulates p53 activation via a novel mechanism in Pro5 cells, it is also toxic to p53 null cells as is seen in the Pro4 line. ^
Resumo:
One growth factor receptor commonly altered during prostate tumor progression is the epidermal growth factor receptor (EGFR). EGFR signaling regulates Erk1/2 phosphorylation through multiple mechanisms. We hypothesized that PKC isozymes play a role in EGFR-dependent signaling, and that through PKC isozyme selective inhibition, EGFR-dependent Erk1/2 activation can be attenuated in AICaP cells. ^ To test the hypothesis, PKC activation was induced by 12-O-tetradecanoyi-phorbol-13-acetate (TPA) in PC-3 cells. As a result, Erk1/2 was activated similarly to what was observed upon EGF stimulation. EGF-induced Erk1/2 activation in PC-3 cells was PKC-dependent, as demonstrated through use of a selective PKC inhibitor, GF109203X. This provides evidence for PKC regulatory control over Erk1/2 signaling downstream of EGFR. Next, we demonstrated that when PKC was inhibited by GF109203X, EGF-stimulated Erk1/2 activation was inhibited in PC-3, but not DU145 cells. TPA-stimulated Erk1/2 activation was EGFR-dependent in both DU145 and PC-3 cells, demonstrated through abrogation of Erk1/2 activation by a selective EGFR inhibitor AG1478. These data support PKC control at or upstream of EGFR in AICaP cells. We observed that interfering with ligand/EGFR binding abrogated Erk1/2 signaling in TPA-stimulated cells, revealing a role for PKC upstream of EGFR. ^ Next, we determined which PKC isozymes might be responsible for Erk1/2 regulation. We first determined that human AICaP cell lines express the same PKC isozymes as those observed in clinical prostate cancer specimens (α, ϵ, &zgr;, ι and PKD). Isozyme-selective methods were employed to characterize discrete PKC isozyme function in EGFR-dependent Erk1/2 activation. Pharmacologic inhibitors implicated PKCα in TPA-induced EGFR-dependent Erk1/2 activation in both PC-3 and DU145 cells. Further, the cPKC-specific inhibitor, Gö6976 decreased viablilty of DU145 cells, providing evidence that PKCα is necessary for growth and survival. Finally, resveratrol, a phytochemical with strong cancer therapeutic potential inhibited Erk1/2 activation, and this correlated with selective inhibition of PKCα. These results demonstrate that PKC regulates pathways critical to progression of CaP cells, including those mediated by EGFR. Thus, PKC isozyme-selective targeting is an attractive therapeutic strategy, and understanding the role of specific PKC isozymes in CaP cell growth and survival may aid in development of effective, non-toxic PKC-targeted therapies. ^
Resumo:
Prostate cancer (PrCa) is a leading cause of morbidity and mortality, yet the etiology remains uncertain. Meta-analyses show that PrCa risk is reduced by 16% in men with type 2 diabetes (T2D), but the mechanism is unknown. Recent genome-wide association studies and meta-analyses have found single nucleotide polymorphisms (SNPs) that consistently predict T2D risk. We evaluated associations of incident PrCa with 14 T2D SNPs in the Atherosclerosis Risk in Communities (ARIC) study. From 1987-2000, there were 397 incident PrCa cases ascertained from state or local cancer registries among 6,642 men (1,560 blacks and 5,082 whites) aged 45-64 years at baseline. Genotypes were determined by TaqMan assay. Cox proportional hazards models were used to assess the association between PrCa and increasing number of T2D risk-raising alleles for individual SNPs and for genetic risk scores (GRS) comprised of the number of T2D risk-raising alleles across SNPs. Two-way gene-gene interactions were evaluated with likelihood ratio tests. Using additive genetic models, the T2D risk-raising allele was associated with significantly reduced risk of PrCa for IGF2BP2 rs4402960 (hazard ratio [HR]=0.79; P=0.07 among blacks only), SLC2A2 rs5400 (race-adjusted HR=0.85; P=0.05) and UCP2 rs660339 (race-adjusted HR=0.84; P=0.02), but significantly increased risk of PrCa for CAPN10 rs3792267 (race-adjusted HR=1.20; P=0.05). No other SNPs were associated with PrCa using an additive genetic model. However, at least one copy of the T2D risk-raising allele for TCF7L2 rs7903146 was associated with reduced PrCa risk using a dominant genetic model (race-adjusted HR=0.79; P=0.03). These results imply that the T2D-PrCa association may be partly due to shared genetic variation, but these results should be verified since multiple tests were performed. When the combined, additive effects of these SNPs were tested using a GRS, there was nearly a 10% reduction in risk of PrCa per T2D risk-raising allele (race-adjusted HR=0.92; P=0.02). SNPs in IGF2BP2, KCNJ11 and SLC2A2 were also involved in multiple synergistic gene-gene interactions on a multiplicative scale. In conclusion, it appears that the T2D-PrCa association may be due, in part, to common genetic variation. Further knowledge of T2D gene-PrCa mechanisms may improve understanding of PrCa etiology and may inform PrCa prevention and treatment.^
Resumo:
Research provides evidence of the positive health effects associated with regular physical activity participation in all populations. Activity may prove to be especially beneficial in those with chronic conditions such as cancer. However, the majority of cancer patients and survivors do not participate in the recommended amount of physical activity. The purpose of this dissertation was to identify factors associated with physical activity participation, describe how these factors change as result of a diet and exercise intervention, and to evaluate correlates of long term physical activity maintenance. ^ For this dissertation, I analyzed data from the FRESH START trial, a randomized, single-blind, phase II clinical trial focused on improving diet and physical activity among recently diagnosed breast and prostate cancer survivors. Analyses included both parametric and non-parametric statistical tests. Three separate studies were conducted, with sample sizes ranging from 400 to 486. ^ Common barriers to exercise, such as “no willpower,” “too busy,” and “I have pain,” were reported among breast and prostate cancer survivors; however, these barriers were not significantly associated with minutes of physical activity. Breast cancer survivors reported a greater number of total barriers to exercise as well as higher proportions reporting individual barriers, compared to prostate cancer survivors. Just less than half of participants reduced their total number of barriers to exercise from baseline to 1-year follow-up, and those who did reduce barriers reported greater increases in minutes of physical activity compared to those who reported no change in barriers to exercise. Participants in both the tailored and standardized intervention groups reported greater minutes of physical activity at 2-year follow-up compared to baseline. Overall, twelve percent of participants reached recommended levels of physical activity at both 1- and 2-year follow-up. Self-efficacy was positively associated with physical activity maintenance, and the number of total barriers to exercise was inversely associated with physical activity maintenance. ^ Results from this dissertation are novel and informative, and will help to guide future physical activity interventions among cancer survivors. Thoughtfully designed interventions may encourage greater participation in physical activity and ultimately improve overall quality of life in this population. ^
Resumo:
Prostate cancer is the most common incident cancer and the second leading cause of death in men in the United States. Although numerous attempts have been made to identify risk factors associated with prostate cancer, the results have been inconsistent and conflicting. The only established risk factors are age and ethnicity. A positive family history of prostate cancer has also been shown to increase the risk two- to three-fold among close relatives.^ There are several similarities between breast and prostate cancer that make the relationship between the two of interest. (1) Histologically, both cancers are predominantly adenocarcinomas, (2) both organs have a sexual and/or reproductive role, (3) both cancers occur in hormone-responsive tissue, (4) therapy often consists of hormonal manipulation, (5) worldwide distribution patterns of prostate and breast cancer are positively correlated.^ A family history study was conducted to evaluate the aggregation of prostate cancer and co-aggregation of breast cancer in 149 patients referred to The University of Texas, M.D. Anderson Cancer Center with newly diagnosed prostate cancer. All patients were white, less than 75 years of age at diagnosis and permanent residents of the United States. Through a personal interview with the proband, family histories were collected on 1,128 first-degree relatives. Cancer diagnoses were verified through medical records or death certificate. Standardized incidence ratios were calculated using a computer program by Monson incorporating data from Connecticut Tumor Registry.^ In this study, familial aggregation of prostate cancer was verified only among the brothers, not among fathers. Although a statistically significant excess of breast cancer was not found, the increased point estimates in mothers, sisters and daughters are consistent with a co-aggregation hypothesis. Rather surprising was the finding of a seven-fold increased risk of prostate cancer and a three-fold increased risk of breast cancer among siblings in the presence of a maternal history of any cancer. Larger family history studies including high risk (African-Americans) and lower-risk groups (Hispanics) and incorporating molecular genetic evaluations should be conducted to determine if genetic differences play a role in the differential incidence rates across ethnic groups. ^
Resumo:
Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^
Resumo:
Purpose: The rapid distal falloff of a proton beam allows for sparing of normal tissues distal to the target. However proton beams that aim directly towards critical structures are avoided due to concerns of range uncertainties, such as CT number conversion and anatomy variations. We propose to eliminate range uncertainty and enable prostate treatment with a single anterior beam by detecting the proton’s range at the prostate-rectal interface and adaptively adjusting the range in vivo and in real-time. Materials and Methods: A prototype device, consisting of an endorectal liquid scintillation detector and dual-inverted Lucite wedges for range compensation, was designed to test the feasibility and accuracy of the technique. Liquid scintillation filled volume was fitted with optical fiber and placed inside the rectum of an anthropomorphic pelvic phantom. Photodiode-generated current signal was generated as a function of proton beam distal depth, and the spatial resolution of this technique was calculated by relating the variance in detecting proton spills to its maximum penetration depth. The relative water-equivalent thickness of the wedges was measured in a water phantom and prospectively tested to determine the accuracy of range corrections. Treatment simulation studies were performed to test the potential dosimetric benefit in sparing the rectum. Results: The spatial resolution of the detector in phantom measurement was 0.5 mm. The precision of the range correction was 0.04 mm. The residual margin to ensure CTV coverage was 1.1 mm. The composite distal margin for 95% treatment confidence was 2.4 mm. Planning studies based on a previously estimated 2mm margin (90% treatment confidence) for 27 patients showed a rectal sparing up to 51% at 70 Gy and 57% at 40 Gy relative to IMRT and bilateral proton treatment. Conclusion: We demonstrated the feasibility of our design. Use of this technique allows for proton treatment using a single anterior beam, significantly reducing the rectal dose.