18 resultados para Covariance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infant mortality rate (IMR) is considered to be one of the most important indices of a country's well-being. Countries around the world and other health organizations like the World Health Organization are dedicating their resources, knowledge and energy to reduce the infant mortality rates. The well-known Millennium Development Goal 4 (MDG 4), whose aim is to archive a two thirds reduction of the under-five mortality rate between 1990 and 2015, is an example of the commitment. ^ In this study our goal is to model the trends of IMR between the 1950s to 2010s for selected countries. We would like to know how the IMR is changing overtime and how it differs across countries. ^ IMR data collected over time forms a time series. The repeated observations of IMR time series are not statistically independent. So in modeling the trend of IMR, it is necessary to account for these correlations. We proposed to use the generalized least squares method in general linear models setting to deal with the variance-covariance structure in our model. In order to estimate the variance-covariance matrix, we referred to the time-series models, especially the autoregressive and moving average models. Furthermore, we will compared results from general linear model with correlation structure to that from ordinary least squares method without taking into account the correlation structure to check how significantly the estimates change.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prevalent sampling is an efficient and focused approach to the study of the natural history of disease. Right-censored time-to-event data observed from prospective prevalent cohort studies are often subject to left-truncated sampling. Left-truncated samples are not randomly selected from the population of interest and have a selection bias. Extensive studies have focused on estimating the unbiased distribution given left-truncated samples. However, in many applications, the exact date of disease onset was not observed. For example, in an HIV infection study, the exact HIV infection time is not observable. However, it is known that the HIV infection date occurred between two observable dates. Meeting these challenges motivated our study. We propose parametric models to estimate the unbiased distribution of left-truncated, right-censored time-to-event data with uncertain onset times. We first consider data from a length-biased sampling, a specific case in left-truncated samplings. Then we extend the proposed method to general left-truncated sampling. With a parametric model, we construct the full likelihood, given a biased sample with unobservable onset of disease. The parameters are estimated through the maximization of the constructed likelihood by adjusting the selection bias and unobservable exact onset. Simulations are conducted to evaluate the finite sample performance of the proposed methods. We apply the proposed method to an HIV infection study, estimating the unbiased survival function and covariance coefficients. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many statistical studies feature data with both exact-time and interval-censored events. While a number of methods currently exist to handle interval-censored events and multivariate exact-time events separately, few techniques exist to deal with their combination. This thesis develops a theoretical framework for analyzing a multivariate endpoint comprised of a single interval-censored event plus an arbitrary number of exact-time events. The approach fuses the exact-time events, modeled using the marginal method of Wei, Lin, and Weissfeld, with a piecewise-exponential interval-censored component. The resulting model incorporates more of the information in the data and also removes some of the biases associated with the exclusion of interval-censored events. A simulation study demonstrates that our approach produces reliable estimates for the model parameters and their variance-covariance matrix. As a real-world data example, we apply this technique to the Systolic Hypertension in the Elderly Program (SHEP) clinical trial, which features three correlated events: clinical non-fatal myocardial infarction, fatal myocardial infarction (two exact-time events), and silent myocardial infarction (one interval-censored event). ^