51 resultados para 6:00 PM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a positive-feedback loop which activates p53 and is a human cancer epithelial marker downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 activity in response to DNA damage and regulating signal mediator such as Akt. Here, we identify Mammalian Constitutive Photomorphogenic 1 (COP1) as a novel E3 ubiquitin ligase for targeting 14-3-3σ through proteasome degradation. We show for the first time that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression leads to stabilization of COP1 through reducing COP1 self-ubiquitination and decelerating COP1’s turnover rate. We also show that CSN6-mediated 14-3-3σ ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival by suppressing FOXO, an Akt target, transcriptional activity. Also, CSN6 overexpression leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that deregulation of this axis will promote cell growth and tumorigenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Increased intracranial pressure (ICP) is a serious, life-threatening, secondary event following traumatic brain injury (TBI). In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology. METHODS: In the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS RESULTS: Consistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP >or= 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained 128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained CONCLUSIONS: Our results suggest that serum IL-6 can be used for the differential diagnosis of elevated ICP in isolated TBI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased serum interleukin-6 (IL-6) is a poor prognostic factor for patients with lymphoma. This may be related to the fact that IL-6 has been shown to be an autocrine and paracrine growth factor for lymphoma cells. We have investigated the regulation of IL-6 in two lymphoma cell lines which produce IL-6 as an autocrine growth factor. The cell lines, LY3 and LY12, were established from two patients with non-Hodgkin's lymphoma. One patient had diffuse large cell lymphoma (LY3), whereas the other had small noncleaved cell lymphoma (LY12). There was no rearrangement or amplification of the IL-6 gene, but we detected IL-1 alpha and TNF production in addition to IL-6. We investigated the effect of inhibitors of IL-1 and TNF on IL-6 production in LY3 and LY12. Our results show that IL-6 production is mainly secondary to endogenous IL-1 production in LY3 cells, however LY12 cells produce IL-6 via a different mechanism since neither anti-IL-1 nor anti-TNF significantly inhibited IL-6 production.^ Transfection of LY12 cells with wildtype and mutant IL-6 promoter-chloramphenicol acetyl transferase constructs, showed increased activity of a trans-acting factor that binds to the NF-kB motif. Therefore, we determined whether there were abnormalities in members of the NF-kB family of transcription factors, such as p65, p50, p52/lyt-10 or rel, which bind to kB motifs. We found increased expression of the p52/lyt-10 transcription factor and activation of the NF-kB pathway in LY12. However, expression of p50, p65 and rel was not increased in LY12 cells. Future investigations could be aimed at determining the effect of inhibitors of NF-kB on IL-6 production. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The aim of this study was to assess the independent risk of hepatitis C virus (HCV) infection in the development of hepatocellular carcinoma (HCC). The independent risk of hepatitis B virus (HBV), its interaction with hepatitis C virus and the association with other risk factors were examined.^ Methods. A hospital-based case-control study was conducted between January 1994 and December 1995. We enrolled 115 pathologically confirmed HCC patients and 230 nonliver cancer controls, who were matched by age ($\pm$5 years), gender, and year of diagnosis. Both cases and controls were recruited from The University of Texas M. D. Anderson Cancer Center at Houston. The risk factors were collected through personal interviews and blood samples were tested for HCV and HBV markers. Univariate and multivariate analyses were performed through conditional logistic regression.^ The prevalence of anti-HCV positive is 25.2% in HCC cases compared to 3.0% in controls. The univariate analysis showed that anti-HCV, HBsAg, alcohol drinking and cigarette smoking were significantly associated with HCC, however, family history of cancer, occupational chemical exposure, and use of oral contraceptive were not. Multivariate analysis revealed a matched odds ratio (OR) of 10.1 (95% CI 3.7-27.4) for anti-HCV, and an OR of 11.9 (95% CI 2.5-57.5) for HBsAg. However, dual infection of HCV and HBV had only a thirteen times increase in the risk of HCC, OR = 13.9 (95% CI 1.3-150.6). The estimated population attributable risk percent was 23.4% for HCV, 12.6% for HBV, and 5.3% for both viruses. Ever alcohol drinkers was positively associated with HCC, especially among daily drinkers, matched OR was 5.7 (95% CI 2.1-15.6). However, there was no significant increase in the risk of HCC among smokers as compared to nonsmokers. The mean age of HCC patients was significantly younger among the HBV(+) group and among the HCV(+)/HBV(+) group, when compared to the group of HCC patients with no viral markers. The association between past histories of blood transfusion, acupuncture, tattoo and IVDU was highly significant among the HCV(+) group and the HBV(+)/HCV(+) group, as compared to HCC patients with no viral markers. Forty percent of the HCC patients were pathologically or clinically diagnosed with liver cirrhosis. Anti-HCV(+) (OR = 3.6 95% CI 1.5-8.9) and alcohol drinking (OR = 2.7 95% CI 1.1-6.7), but not HBsAg, are the major risk factors for liver cirrhosis in HCC patients.^ Conclusion. Both hepatitis B virus and hepatitis C virus were independent risk factors for HCC. There was not enough evidence to determine the interaction between both viruses. Only daily alcoholic drinkers showed increasing risk for HCC development, as compared to nondrinkers. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) have been recognized as one of the most feared long-term complications of cancer therapy. The aim of this case-control study was to determine the prevalence of chromosomal abnormalities and family history of cancer among secondary AML/MDS cases and de novo AML/MDS controls. Study population were 332 MD Anderson Cancer Center patients who were registered between 1986 and 1994. Cases were patients who had a prior invasive cancer before diagnoses of AML/MDS and controls were de novo AML/MDS. Cases (166) and controls (166) were frequency matched on age $\pm$5 years, sex and year of diagnosis of leukemia. Cytogenetic data were obtained from the leukemia clinic database of MD Anderson Cancer Center and data on family history of cancer and other risk factors were abstracted from the patients' medical record. The distribution of AML and MDS among cases was 58% and 42% respectively and among controls 67% and 33% respectively. Prevalence of chromosomal abnormalities were observed more frequently among cases than controls. Reporting of family history of cancer were similar among both groups. Univariate analysis revealed an odds ratio (OR) of 2.8 (95% CI 1.5-5.4) for deletion of chromosome 7, 1.9 (95% CI 0.9-3.8) for deletion of chromosome 5, 2.3 (95% CI 0.8-6.2) for deletion of 5q, 2.0 (95% CI 1.0-4.2) for trisomy 8, 1.3 (95% CI 0.8-2.1) for chromosomal abnormalities other than chromosome 5 or 7 and 1.3 (95% CI 0.8-2.0) for family history of cancer in a first degree relative. The OR remained significant for deletion of chromosome 7 (2.3, 95% CI 1.1-4.8) after adjustment for age, alcohol, smoking, occupation related to chemical exposure and family history of cancer in a first degree relative. Of the 166 secondary AML/MDS patients 70% had a prior solid tumor and 30% experienced hematological cancers. The most frequent cancers were breast (21.1%), non-Hodgkin lymphoma (13.3%), Hodgkin's disease (10.2%), prostate (7.2%), colon (6%), multiple myeloma (3.6%) and testes (3.0%). The majority of these cancer patients were treated with chemotherapy or radiotherapy or both. Abnormalities of chromosome 5 or 7 were found to be more frequent in secondary AML/MDS patients with prior hematological cancer than patients with prior solid tumors. Median time to develop secondary AML/MDS was 5 years. However, secondary AML/MDS among patients who received chemotherapy and had a family history of cancer in a first degree relative occurred earlier (median 2.25 $\pm$ 0.9 years) than among patients without such family history (median 5.50 $\pm$ 0.18 years) (p $<$.03). The implication of exposure to chemotherapy among patients with a family history of cancer needs to be further investigated. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To determine the prevalence of and the relationships between the degree and source of hyperandrogenemia, ovulatory patterns and cardiovascular disease risk indicators (blood pressure, indices or amount of obesity and fat distribution) in women with menstrual irregularities seen at endocrinologists' clinic. Design: A cross-sectional study design. Participants: A sample of 159 women with menstrual irregularities, aged 15-44, seen at endocrinologists' clinic. Main Outcome Measures: androgen levels, body mass index (BMI), waist-hip ratio (WHR), systolic and diastolic blood pressure (SBP & DBP), source of androgens, ovulatory activity. Results: The prevalence of hyperandrogenemia was 54.7% in this study sample. As expected, women with acne or hirsutism had an odds ratio 12.5 (95%CI = 5.2-25.5) times and 36 (95%CI = 12.9-99.5) times more likely to have hyperandrogenemia than those without acne or hirsutism. The main findings of this study were the following: Hyperandrogenemic women were more likely to have oligomenorrheic cycles (OR = 3.8, 95%CI = 1.5-9.9), anovulatory cycles (OR = 6.6, 95%CI = 2.8-15.4), general obesity (BMI $\ge$ 27) (OR = 6.8, 95%CI = 2.2-27.2) and central obesity (WHR $\ge$ 127) (OR = 14.5, 95%CI = 6.1-38.7) than euandrogenemic women. Hyperandrogenemic women with non-suppressible androgens had a higher mean BMI (29.3 $\pm$ 8.9) than those with suppressible androgens (27.9 $\pm$ 7.9); the converse was true for abdominal adiposity (WHR). Hyperandrogenemic women had a 2.4 odds ratio (95%CI = 1.0-6.2) for an elevated SBP and a 2.7 odds ratio (95%CI = 0.8-8.8) for elevated DBP. When age differences were accounted for, this relationship was strengthened and further strengthened when sources of androgens were controlled. When the differences in BMI were controlled, the odds ratio for elevated SBP in hyperandrogenemic women increased to 8.8 (95%CI = 1.1-69.9). When the age, the source of androgens, the amount of obesity and the type of obesity were controlled, hyperandrogenemic women had 13.5 (95%CI = 1.1-158.9) odds ratio for elevated SBP. Conclusions: In this study population, the presence of menstrual irregularities are highly predictive for the presence of elevated androgens. Women with elevated androgens have a high risk for obesity, more specifically for central obesity. The androgenemic status is an independent predictor of blood pressure elevation. It is probable that in the general population, the presence of menstrual irregularities are predictive of hyperandrogenemia. There is a great need for a population study of the prevalence of hyperandrogenemia and for longitudinal studies in hyperandrogenemic women (adrenarche to menopause) to investigate the evolution of these relationships. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolism of the antitumor agent 6-thioguanine (TG, NSC-752) by rat liver was studied in vitro. Livers from adult male Sprague-Dawley rats were homogenized and the "liver homogenate" was subjected to differential centrifugation to obtain the "10,000 x g pellet", the "post-mitochondrial fraction", the "cytosol fraction", and the "microsomes". The homogenity of each fraction was estimated by appropriate marker enzyme assays. To delineate the in vitro metabolism of TG by rat liver, 0.2 mM of {8-('14)C}TG was incubated with different subcellular fractions in KCl-Tris-MgCl(,2) buffer, pH 7.4 at 37(DEGREES). The metabolites formed were identified by chromatography, UV spectrometry, as well as mass spectrometry. After a 1 hr incubation, TG was metabolized by the liver homogenate, the 10,000 x g pellet and the post-mitochondrial fraction mainly to 6-thioguanosine (TGR), accompanied by varying lesser amounts of 6-thiouric acid (TUA), allantoin, guanine-6-sulfinic acid (G-SO(,2)H) and an unknown product. In comparison, the cytosal fraction converted TG almost entirely to TGR and TUA in equal amounts. The formation of TGR from TG was limited by the endogenous supply of ribose-1-phosphate. With the microsomal fraction, however, TG was metabolized significantly to G-SO(,2)H and the unknown, accompanied with some TGR. After a 5 hr incubation the metabolism of TG was changed to favor the catabolic route, yielding mostly TUA in the post-mitochondrial and cytosol fractions; but mainly allantoin in the liver homogenate fraction. The kinetic studies of TG metabolism by the subcellar fractions indicated that the formation of TGR served as a depot form of TG. The level of TGR decreased when the catabolism of TG became prominent. The oxidation of TG to GSO(,2)H mediated by the hepatic microsomes represented a new catabolic pathway of TG. This GSO(,2)H, under acidic conditions, readily decomposes to guanine and inorganic sulfate. In the presence of reduced glutathione in Tris buffer, pH 7.8 at 25(DEGREES), GSO(,2)H is adducted to glutathione chemically to form S-(2-amino-purin-6-yl) glutathione and conceivably, inorganic sulfate. Therefore, the formation of GSO(,2)H from TG might have implication in the desulfuration mechanism of TG. On the other hand, the unknown formed from TG by the action of the microsomal enzymes appeared to be a TG conjugate. However, it is neither a glutathione, a glucuronide, nor a ribose conjugate. Additionally, the deamination of TG by guanine deaminase (E.C.3.5.4.3) isolated from rat liver was also investigated. TG is a poorer substrate (Km = 4.8 x 10('-3)M) for guanine deaminase than that of guanine (Km = 4.7 x 10('-6)M) at pH 7.25, optimal pH for TG as a substrate. TG is also a competitive inhibitor of guanine for guanine deaminase, with a ki of 2.2 x 10('-4)M. ^