55 resultados para cerebellum tumor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p53-family of proteins regulates expression of target genes during tissue development and differentiation. Within the p53-family, p53 and p73 have hepatic-specific functions in development and tumor suppression. Despite a growing list of p53/p73 target genes, very few of these have been studied in vivo, and the knowledge regarding functions of p53 and p73 in normal tissues remains limited. p53+/-p73+/- mice develop hepatocellular carcinoma (HCC), whereas overexpression of p53 in human HCC leads to tumor regression. However, the mechanism of p53/p73 function in liver remains poorly characterized. Here, the model of mouse liver regeneration is used to identify new target genes for p53/p73 in normal quiescent vs. proliferating cells. In response to surgical removal of ~2/3 of liver mass (partial hepatectomy, PH), the remaining hepatocytes exit G0 of cell cycle and undergo proliferation to reestablish liver mass. The hypothesis tested in this work is that p53/p73 functions in cell cycle arrest, apoptosis and senescence are repressed during liver regeneration, and reactivated at the end of the regenerative response. Chromatin immunoprecipitation (ChIP), with a p73-antibody, was used to probe arrayed genomic sequences (ChIP-chip) and uncover 158 potential targets of p73-regulation in normal liver. Global microarray analysis of mRNA levels, at T=0-48h following PH, revealed sets of genes that change expression during regeneration. Eighteen p73-bound genes changed expression after PH. Four of these genes, Foxo3, Jak1, Pea15, and Tuba1 have p53 response elements (p53REs), identified in silico within the upstream regulatory region. Forkhead transcription factor Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative, cellular proliferation. p53 and p73 bind a Foxo3 p53RE and maintain active expression in quiescent liver. During liver regeneration, binding of p53 and p73, recruitment of acetyltransferase p300, and an active chromatin structure of Foxo3 are disrupted, alongside loss of Foxo3 expression. These parameters of Foxo3 regulation are reestablished at completion of liver growth and regeneration, supporting a temporary suspension of p53 and p73 regulatory functions in normal cells during tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jak-stat pathway is critical for cellular proliferation and is commonly found to be deregulated in many solid tumors as well as hematological malignancies. Such findings have spurred the development of novel therapeutic agents that specifically inhibit Jak2 kinase, thereby suppressing tumor cell growth. Tyrphostin AG490, the first described Jak2 inhibitor, displays poor pharmacology and requires high concentrations for anti-tumor activities. Our research group screened a small library of AG490 structural analogues and identified WP1130 as a potent inhibitor of Jak2 signaling. However, unlike AG490, WP1130 did not directly inhibit Jak2 kinase activity. Our results show that WP1130 induces rapid ubiquitination and subsequent re-localization of Jak2 into signaling incompetent aggresomes. In addition to Jak2, WP1130 also induces accumulation of other ubiquitinated proteins without inhibiting 20S proteasome activity. Further analysis of the mechanism of action of WP1130 revealed that WP1130 acts as a partly selective DUB inhibitor. It specifically inhibits the deubiquitinase activity of USP9x, USP5, USP14 and UCH37. WP1130 mediated inhibition of tumor-associated DUBs resulted in down-regulation of anti-apoptotic and up-regulation of pro-apoptotic proteins, such as MCL-1 and p53 respectively. Our results demonstrate that chemical modification of a previously described Jak2 inhibitor results in the unexpected discovery of a novel compound which acts as a DUB inhibitor, suppressing Jak-Stat signaling by a novel mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of metastatic melanoma with tumor reactive T cells (adoptive T cell therapy, ACT) is a promising approach associated with a high clinical response rate. However, further optimization of this treatment modality is required to increase the clinical response after this therapy. ACT in melanoma involves an initial phase (pre-REP) of tumor-infiltrating lymphocyte (TIL) expansion ex vivo from tumor isolates followed by a second phase, “rapid expansion protocol” (REP) generating the billions of cells used as the TIL infusion product. The main question addressed in this thesis was how the currently used REP affected the responsiveness of the CD8+ T cells to defined melanoma antigens. We hypothesized that the REP drives the TIL to further differentiate and become hyporesponsive to antigen restimulation, therefore, proper cytokine treatment or other ways to expand TIL is required to improve upon this outcome. We evaluated the response of CD8+ TIL to melanoma antigen restimulation using MART-1 peptide-pulsed mature DC in vitro. Post-REP TILs were mostly hypo-responsive with poor proliferation and higher apoptosis. Phenotypic analysis revealed that the expression of CD28 was significantly reduced in post-REP TILs. By sorting experiment and microarray analysis, we confirmed that the few CD28+ post-REP TILs had superior survival capacity and proliferated after restimulation. We then went on to investigate methods to maintain CD28 expression during the REP and improve TIL responsiveness. Firstly, IL-15 and IL-21 were found to synergize in maintaining TIL CD28 expression and antigenic responsiveness during REP. Secondly, we found IL-15 was superior as compared to IL-2 in supporting the long-term expansion of antigen-specific CD8+ TIL after restimulation. These results suggest that current expansion protocols used for adoptive T-cell therapy in melanoma yield largely hyporesponsive products containing CD8+ T cells unable to respond in vivo to re-stimulation with antigen. A modification of our current approaches by using IL-15+IL-21 as supporting cytokines in the REP, or/and administration of IL-15 instead of IL-2 after TIL infusion, may enhance the anti-tumor efficacy and long-term persistence of infused T cells in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a locally aggressive collagenous myofibroblastic neoplasm of the mandible in an 18-year-old male. Clinically, the lesion presented with rapid growth and irregular mandibular bone destruction. Grossly, the tumor was 10 cm in greatest dimension, light-tan, firm, and involving the posterior one-thirds of the body and inferior half of the left mandibular ramus. Histologically, the lesion was composed of a loose spindle cell proliferation interspersed with periodic dense bands of collagen. The spindle cells reacted positively to smooth muscle actin, calponin, and focally to desmin and were negative for S-100, pan-cytokeratin, CD99, CD34 and caldesmon, supporting myofibroblastic derivation. At our 4 year follow-up, the patient remained free of local recurrence and surgery related complications. The clinicopathologic findings and the differential diagnosis of this lesion is presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E2F1 is a multi-faceted protein that has roles in a number of important cellular processes including cell cycle regulation, apoptosis, proliferation, and the DNA damage response (DDR). Moreover, E2F1 has opposing roles in tumor development, acting as either a tumor suppressor or an oncogene depending on the context. In human cancer, E2F1 is often deregulated through aberrations in the Rb-p16INK4a-cyclin D1 pathway. In these studies we examined three mechanisms by which E2F1 might mediate its tumor suppressive properties: p21-induced senescence, miRNAs, and the DNA damage response. We found that E2F1 acts as a tumor suppressor in response to ras activation through a non-apoptotic mechanism requiring ARF and p53, but not p21. However, p21-loss inhibited two-stage chemical carcinogenesis in FVB mice. In response to E2F1 overexpression, we found that 22 miRNAs are differentially regulated in mouse epidermis, including let-7a, let-7c, and miR-301. Additionally, regulation of miR-301 involves binding of E2F1 to its promoter. Finally, our data indicate a role for E2F1 at sites of DNA damage requiring E2F1’s phosphorylation at serine 31 which may involve DNA repair. Further, this role in the DDR may affect tumor aggressiveness and multiplicity. In all, we have explored three mechanisms for E2F1-induced tumor suppression and identified E2F1’s role in the DNA damage response as a likely contributor to this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RMI1 (BLM-Associated Protein 75 or Blap75) is highly conserved from yeast to human. Previous studies have shown that hRMI1 is required for BLM/TopoIIIα/RMI1 complex stability and function. However, in vivo functions of RMI1 remain elusive. To address this question, I generated RMI1 knockout mice by homologous replacement targeting. While RMI1+/- mice showed no obvious phenotype, deletion of both RMI1 alleles leads to early embryonic lethality before implantation. I then generated RMI1/p53 double knockout mice. After ionizing radiation treatment at 4Gy, RMI1/p53 double-heterzygous mice showed shortened tumor latency and aggressive tumor types when comparing with wild type, RMI1+/- and p53+/- control cohorts. My study suggests a dual-functional role of RMI1 in early embryonic development and tumor suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squamous cell carcinoma of head and neck (SCCHN) is the tenth most common cancer in the world. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years. Therefore new targets for therapy are needed, and to this end we are studying signaling pathways activated by IL-6 which we have found stimulates cell migration and soft agar growth in SCCHN. Our data show that IL-6 increases TWIST expression in a transcription-independent mechanism in many SCCHN cell lines. Further investigation reveals TWIST can be phosphorylated upon IL-6 treatment. By computation prediction (http://scansite.mit.edu/motifscan_seq.phtml ), we found that TWIST has a putative phosphorylation site for casein kinase 2 (CK2) suggesting that this kinase could serve as a link between IL-6 stimulation and Twist stability. To test this hypothesis, we used a CK2 inhibitor and shRNA to CK2 and found that these interventions inhibited IL-6 stimulation of TWIST stability. In addition, mutation of the putative CK2 phosphorylation site (S18/S20A) in TWIST decreased the amount of phospho-ATP incorporated by TWIST in an in vitro kinase assay, and altered TWIST stability. In Boyd chamber migration assay and wound-healing assay, the CK2 inhibitor, DMAT, was found to decrease the motility of IL-6 stimulated SCCHN cells and over expression of either a wild-type or the hyperphosphorylated mimicking mutant S18/20D –Twist rather than the hypo-phosphorylated mimicking mutant S18/20A-Twist can promote SCCHN cell motility.To our knowledge, this is the first report to identify the importance of IL-6 stimulated CK2 phosphorylation of TWIST in SCCHN. As CK2 inhibitors are currently under phase I clinical trials, our findings indicate that CK2 may be a viable therapeutic target in SCCHN. Therefore, further pre-clinical studies of this inhibitor are underway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of Combined Bevacizumab and Paclitaxel on Tumor Interstitial Fluid Pressure in a Preclinical Breast Cancer Model by Ricardo H. Alvarez Several mechanisms of cell resistance are often accountable for unsuccessful chemotherapy against cancer. Another reason, which has received increased attention, is the inefficient transport of anticancer drugs into tumor tissue. These impaired transports of chemotherapy into the tumor have been attributed to abnormal microvasculature and to pathologically increased tumor hypertension also called: interstitial fluid pressure (IFP). The pathophysiological processes leading to elevated tumor IFP are poorly understood. Here, in a preclinical breast cancer model, it is argued that a condition of raised IFP is a major factor in preventing optimal access of systemically administered chemotherapy agents. In our experimental model, we used a GILM2 human breast cancer in xenografts; mice were treated with different doses of paclitaxel –a widely used antimicrotubular agent, and bevacizumab –monoclonal antibody against vascular endothelial growth factor (VEGF). The proposed research project is designed to test the hypothesis that paclitaxel in combination with bevacizumab decreases the tumor IPF by restoring tumor permeability and increasing chemotherapy delivery. We demonstrated that the combination of paclitaxel and bevacizumab produced greater tumor control than either agent given alone and this combination reduced the IFP, producing an increment of 75% of apoptosis compared with the control arm. In addition, the intra-tumor paclitaxel quantification by liquid chromatography/Mass Spectrometry (LC/MS) demonstrated that lower dose of both agents showed a synergistic effect compared with high dose of treatment, where there is no significantly increase of paclitaxel into the tumor. These preclinical results are likely to have broad implications for the utility of anti-angiogenic therapies alone and in combination with chemotherapeutic agents.