1 resultado para joint motion
em Digital Peer Publishing
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (71)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (65)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (5)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (141)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (75)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (32)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (46)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (12)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (34)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (51)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (12)
- Memorial University Research Repository (1)
- QSpace: Queen's University - Canada (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (9)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- School of Medicine, Washington University, United States (6)
- Scielo Saúde Pública - SP (21)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (1)
- Universidade do Minho (11)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (217)
- Université de Montréal, Canada (16)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (49)
- University of Southampton, United Kingdom (1)
Resumo:
In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.