8 resultados para camera motion estimation

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When depicting both virtual and physical worlds, the viewer's impression of presence in these worlds is strongly linked to camera motion. Plausible and artist-controlled camera movement can substantially increase scene immersion. While physical camera motion exhibits subtle details of position, rotation, and acceleration, these details are often missing for virtual camera motion. In this work, we analyze camera movement using signal theory. Our system allows us to stylize a smooth user-defined virtual base camera motion by enriching it with plausible details. A key component of our system is a database of videos filmed by physical cameras. These videos are analyzed with a camera-motion estimation algorithm (structure-from-motion) and labeled manually with a specific style. By considering spectral properties of location, orientation and acceleration, our solution learns camera motion details. Consequently, an arbitrary virtual base motion, defined in any conventional animation package, can be automatically modified according to a user-selected style. In an animation package the camera motion base path is typically defined by the user via function curves. Another possibility is to obtain the camera path by using a mixed reality camera in motion capturing studio. As shown in our experiments, the resulting shots are still fully artist-controlled, but appear richer and more physically plausible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a handheld video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a stateof- the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-theart tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a model-based approach for real-time camera pose estimation in industrial scenarios. The line model which is used for tracking is generated by rendering a polygonal model and extracting contours out of the rendered scene. By un-projecting a point on the contour with the depth value stored in the z-buffer, the 3D coordinates of the contour can be calculated. For establishing 2D/3D correspondences the 3D control points on the contour are projected into the image and a perpendicular search for gradient maxima for every point on the contour is performed. Multiple hypotheses of 2D image points corresponding to a 3D control point make the pose estimation robust against ambiguous edges in the image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual worlds exploration techniques are used in a wide variety of domains — from graph drawing to robot motion. This paper is dedicated to virtual world exploration techniques which have to help a human being to understand a 3D scene. An improved method of viewpoint quality estimation is presented in the paper, together with a new off-line method for automatic 3D scene exploration, based on a virtual camera. The automatic exploration method is working in two steps. In the first step, a set of “good” viewpoints is computed. The second step uses this set of points of view to compute a camera path around the scene. Finally, we define a notion of semantic distance between objects of the scene to improve the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript details a technique for estimating gesture accuracy within the context of motion-based health video games using the MICROSOFT KINECT. We created a physical therapy game that requires players to imitate clinically significant reference gestures. Player performance is represented by the degree of similarity between the performed and reference gestures and is quantified by collecting the Euler angles of the player's gestures, converting them to a three-dimensional vector, and comparing the magnitude between the vectors. Lower difference values represent greater gestural correspondence and therefore greater player performance. A group of thirty-one subjects was tested. Subjects achieved gestural correspondence sufficient to complete the game's objectives while also improving their ability to perform reference gestures accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, depth cameras have been widely utilized in camera tracking for augmented and mixed reality. Many of the studies focus on the methods that generate the reference model simultaneously with the tracking and allow operation in unprepared environments. However, methods that rely on predefined CAD models have their advantages. In such methods, the measurement errors are not accumulated to the model, they are tolerant to inaccurate initialization, and the tracking is always performed directly in reference model's coordinate system. In this paper, we present a method for tracking a depth camera with existing CAD models and the Iterative Closest Point (ICP) algorithm. In our approach, we render the CAD model using the latest pose estimate and construct a point cloud from the corresponding depth map. We construct another point cloud from currently captured depth frame, and find the incremental change in the camera pose by aligning the point clouds. We utilize a GPGPU-based implementation of the ICP which efficiently uses all the depth data in the process. The method runs in real-time, it is robust for outliers, and it does not require any preprocessing of the CAD models. We evaluated the approach using the Kinect depth sensor, and compared the results to a 2D edge-based method, to a depth-based SLAM method, and to the ground truth. The results show that the approach is more stable compared to the edge-based method and it suffers less from drift compared to the depth-based SLAM.