3 resultados para Real-time volume rendering
em Digital Peer Publishing
Resumo:
The anatomy of the human brain is organized as a complex arrangement of interrelated structures in three dimensional space. To facilitate the understanding of both structure and function, we have created a volume rendered brain atlas (VRBA) with an intuitive interface that allows real-time stereoscopic rendering of brain anatomy. The VRBA incorporates 2-dimensional and 3-dimensional texture mapping to display segmented brain anatomy co-registered with a T1 MRI. The interface allows the user to remove and add any of the 62 brain structures, as well as control the display of the MRI dataset. The atlas also contains brief verbal and written descriptions of the different anatomical regions to correlate structure with function. A variety of stereoscopic projection methods are supported by the VRBA and provide an abstract, yet simple, way of visualizing brain anatomy and 3-dimensional relationships between different nuclei.
Resumo:
In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.