5 resultados para Open Research Data

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CERTS database is now online! Our efforts bear finally fruit! It is possible to visit our database on the web now in French, in English and in about ten European languages in the forthcoming months. Your turn! Connect you to the following address: www.certs-europe.com/database

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earth observations (EO) represent a growing and valuable resource for many scientific, research and practical applications carried out by users around the world. Access to EO data for some applications or activities, like climate change research or emergency response activities, becomes indispensable for their success. However, often EO data or products made of them are (or are claimed to be) subject to intellectual property law protection and are licensed under specific conditions regarding access and use. Restrictive conditions on data use can be prohibitive for further work with the data. Global Earth Observation System of Systems (GEOSS) is an initiative led by the Group on Earth Observations (GEO) with the aim to provide coordinated, comprehensive, and sustained EO and information for making informed decisions in various areas beneficial to societies, their functioning and development. It seeks to share data with users world-wide with the fewest possible restrictions on their use by implementing GEOSS Data Sharing Principles adopted by GEO. The Principles proclaim full and open exchange of data shared within GEOSS, while recognising relevant international instruments and national policies and legislation through which restrictions on the use of data may be imposed.The paper focuses on the issue of the legal interoperability of data that are shared with varying restrictions on use with the aim to explore the options of making data interoperable. The main question it addresses is whether the public domain or its equivalents represent the best mechanism to ensure legal interoperability of data. To this end, the paper analyses legal protection regimes and their norms applicable to EO data. Based on the findings, it highlights the existing public law statutory, regulatory, and policy approaches, as well as private law instruments, such as waivers, licenses and contracts, that may be used to place the datasets in the public domain, or otherwise make them publicly available for use and re-use without restrictions. It uses GEOSS and the particular characteristics of it as a system to identify the ways to reconcile the vast possibilities it provides through sharing of data from various sources and jurisdictions on the one hand, and the restrictions on the use of the shared resources on the other. On a more general level the paper seeks to draw attention to the obstacles and potential regulatory solutions for sharing factual or research data for the purposes that go beyond research and education.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Under the brand name “sciebo – the Campuscloud” (derived from “science box”) a consortium of more than 20 research and applied science universities started a large scale cloud service for about 500,000 students and researchers in North Rhine-Westphalia, Germany’s most populous state. Starting with the much anticipated data privacy compliant sync & share functionality, sciebo offers the potential to become a more general cloud platform for collaboration and research data management which will be actively pursued in upcoming scientific and infrastructural projects. This project report describes the formation of the venture, its targets and the technical and the legal solution as well as the current status and the next steps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, learning analytics (LA) has attracted a great deal of attention in technology-enhanced learning (TEL) research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?), stakeholders (who?), objectives (why?), and methods (how?). It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.