3 resultados para Image-based control

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image-based Relighting (IBRL) has recently attracted a lot of research interest for its ability to relight real objects or scenes, from novel illuminations captured in natural/synthetic environments. Complex lighting effects such as subsurface scattering, interreflection, shadowing, mesostructural self-occlusion, refraction and other relevant phenomena can be generated using IBRL. The main advantage of image-based graphics is that the rendering time is independent of scene complexity as the rendering is actually a process of manipulating image pixels, instead of simulating light transport. The goal of this paper is to provide a complete and systematic overview of the research in Imagebased Relighting. We observe that essentially all IBRL techniques can be broadly classified into three categories (Fig. 9), based on how the scene/illumination information is captured: Reflectance function-based, Basis function-based and Plenoptic function-based. We discuss the characteristics of each of these categories and their representative methods. We also discuss about the sampling density and types of light source(s), relevant issues of IBRL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an image-based method for relighting a scene by analytically fitting cosine lobes to the reflectance function at each pixel, based on gradient illumination photographs. Realistic relighting results for many materials are obtained using a single per-pixel cosine lobe obtained from just two color photographs: one under uniform white illumination and the other under colored gradient illumination. For materials with wavelength-dependent scattering, a better fit can be obtained using independent cosine lobes for the red, green, and blue channels, obtained from three achromatic gradient illumination conditions instead of the colored gradient condition. We explore two cosine lobe reflectance functions, both of which allow an analytic fit to the gradient conditions. One is non-zero over half the sphere of lighting directions, which works well for diffuse and specular materials, but fails for materials with broader scattering such as fur. The other is non-zero everywhere, which works well for broadly scattering materials and still produces visually plausible results for diffuse and specular materials. We also perform an approximate diffuse/specular separation of the reflectance, and estimate scene geometry from the recovered photometric normals to produce hard shadows cast by the geometry, while still reconstructing the input photographs exactly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last years, the well known ray tracing algorithm gained new popularity with the introduction of interactive ray tracing methods. The high modularity and the ability to produce highly realistic images make ray tracing an attractive alternative to raster graphics hardware. Interactive ray tracing also proved its potential in the field of Mixed Reality rendering and provides novel methods for seamless integration of real and virtual content. Actor insertion methods, a subdomain of Mixed Reality and closely related to virtual television studio techniques, can use ray tracing for achieving high output quality in conjunction with appropriate visual cues like shadows and reflections at interactive frame rates. In this paper, we show how interactive ray tracing techniques can provide new ways of implementing virtual studio applications.