30 resultados para Dipl.-Ing. Thomas Linke
em Digital Peer Publishing
Resumo:
In der Verfahrens- und Verarbeitungstechnik treten bei der Lagerung und Förderung von Schüttgütern und der damit verbundenen Dimensionierung der Fördertechnik zahlreiche Probleme auf. Es wird ein neues Lösungsprinzip für die Schüttgutlagerung sowie dessen Ein- und Austragung vorgestellt. Hierbei handelt es sich um ein rotierendes Umschlagrad, welches am oberen Behälterrand drehbar gelagert ist und je nach Füllstand automatisch an das Höhenniveau angepasst wird. Der Schüttgutumschlag erfolgt nach dem Prinzip „Last In - First Out“. Das System ist speziell für Bunkerlagerung konzipiert, modular aufgebaut und soll bei Durchmessern von 4m bis ca. 25m zum Einsatz gelangen. Auf das Schüttgut und dessen spezielle Eigenschaften abgestimmte Einstellmöglichkeiten der Austragsorgane ermöglichen eine Optimierung hinsichtlich der Austrags- und Antriebsleistung. Schüttguttypische Fließprobleme bei der Bunker- und Silolagerung, welche mit der herkömmlichen Austragstechnik auftreten, können durch das vorgestellte Prinzip vermieden werden.
Resumo:
Kunststoff-Seilrollen sind leichter als Stahl-Seilrollen, woraus für die Konstruktion, besonders von Auslegerkranen, Vorteile erwachsen. Kunststoff-Seilrollen bringen aber auch Vorteile für das Seil selbst, weil sich dessen Lebensdauer vergrößert. Dieser Lebensdauergewinn wurde durch umfassende experimentelle und theoretische Untersuchungen zum Einfluss von Kunststoff-Seilrollen auf die Drahtseillebensdauer quantifiziert und begründet. Zur sicherheitstechnischen Beherrschung von Seiltrieben mit Kunststoff-Seilrollen wird eine Online-Schadensakkumulation vorgeschlagen.
Resumo:
Automatischen Sortiersysteme (Sorter) besitzen in der Intralogistik eine große Bedeutung. Sorter erreichen eine ausdauernd hohe Sortierleistung bei gleichzeitig geringer Fehlsortierrate und bilden deshalb oft den zentralen Baustein in Materialflusssystemen mit hoher Umschlagsrate. Distributionszentren mit Lager und Kommissionierfunktion sind typische Vertreter solcher Materialflusssysteme. Ein Sorter besteht aus den Subsystemen Einschleusung, Verteilförderer und Endstellen. Die folgenden Betrachtungen fokussieren auf ein Sortermodell mit einem Verteilförderer in Ringstruktur und einer Einzelplatzbelegung. Auf jedem Platz kann genau ein Gut transportiert werden. Der Verteilförderer besitzt somit eine feste Transportkapazität. Derartige Förderer werden in der Regel als Kippschalen- oder Quergurt-Sorter ausgeführt. Die theoretische Sortierleistung für diesen Sortertyp kann aus Fahrgeschwindigkeit und Transportplatzabstand bestimmt werden. Diese Systemleistung wird im praktischen Betrieb kaum erreicht. Verschiedene Faktoren im Einschleusbereich und im Ausschleusbereich führen zu einer Leistungsminderung. Betrachtungen zur Bestimmung der mittleren Warteschlangenlänge im Einschleusbereich sowie zur Ermittlung des Rundläuferanteils auf dem Verteilförderer werden im folgenden Beitrag vorgestellt. Diesem Beitrag liegt ein Forschungsvorhaben zugrunde, das aus Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) gefördert und im Auftrage der Bundesvereinigung Logistik e.V. (BVL) ausgeführt wurde.
Resumo:
Zahnriemenfördersysteme haben auf Grund ihrer wirtschaftlichen und technischen Vorteile beim Transport von Stückgütern ein breites Anwendungsfeld in den unterschiedlichen Bereichen der Industrie gefunden und gewinnen weiterhin an Bedeutung. Die Auslegung der Systeme beschränkt sich gegenwärtig im Wesentlichen auf die Zugstrang- und die Zahnfußfestigkeit des Zahnriemens. Grundlagen der Berechnungen sind oft recht vage Aussagen zur Höhe des Reibwertes zwischen dem Zahnriemen und dessen Stützschiene. Die Erhöhung der Kontakttemperatur durch die eingebrachte Reibleistung wird meist völlig vernachlässigt. In der Praxis wird oftmals auf Erfahrungswerte zurückgegriffen, wobei die Gefahr der Über- bzw. Unterdimensionierung mit erheblichen Auswirkungen auf die Lebensdauer, das Verschleißverhalten und die Betriebssicherheit besteht. 1. Anwendung von Zahnriemenförderern Das Einsatzgebiet der Zahnriemen ist neben der Antriebstechnik in zunehmendem Maße die Fördertechnik, wo diese als Zug- und Tragmittel für den Stückguttransport zur Anwendung kommen. Der Grund dieser Entwicklung lässt sich mit den günstigen Eigenschaften dieser Maschinenelemente erklären. Besonders zu erwähnen sind dabei der geräuscharme Lauf, die geringe Masse und die niedrigen Kosten in Anschaffung und Wartung. Der synchrone Lauf, der mit Zahnriemen wie auch mit Förderketten realisierbar ist, ist ein weiterer wesentlicher Vorteil. Dabei übernehmen die robusten Förderketten den Bereich der Fördertechnik, in dem große Kräfte übertragen werden müssen und stark schmutzintensive Umgebungsbedingungen vorherrschen. Haupteinsatzgebiete der Zahnriemenförderer ist der Bereich der empfindlicheren Güter mit relativ geringen Massen, wobei sich immer mehr abzeichnet, dass auch Einsatzgebiete mit schweren Werkzeugträgern erschlossen werden. Die Transportzahnriemen müssen bei dem Einsatz zahnseitig abgestützt werden, um die Gutmasse aufnehmen zu können. Stückgüter können von Zahnriemen durch Kraft- oder Formschluss transportiert werden. Der Einsatz ist von den technologischen Erfordernissen und der Art des Transportgutes abhängig. Formschluss wird meist über aufgeschweißte Formelemente / Mitnehmer realisiert. Diese Art des Transportes wird verwendet, wenn Teile: • vereinzelt, • genau positioniert, ������ zeitlich exakt getaktet, • über starke Steigungen bis hin zum vertikalen transportiert werden müssen, • bzw. sich gegenseitig nicht berühren dürfen. Abbildung 1: Formschlüssiger Transport mit aufgeschweißten Formelementen Die Art und die Form des auf dem Zahnriemenrücken aufgebrachten Formelementes werden vom Gut selbst und dem Einsatzzweck bestimmt. Eine Vielzahl von verschiedenen Elementen wird von der Industrie standardmäßig angeboten. Bei der kraftschlüssigen Variante können zwei grundlegende Arten unterschieden werden: Zum einen Zahnriemenbeschichtungen mit sehr hohem Reibwert, zum anderen mit sehr niedrigen Reibwerten. Beschichtungen mit sehr hohem Reibwert (z. B. Silikon, PUR-Schaum, Naturkautschuk) eignen sich besonders für Schrägförderer und Abzugsbänder sowie für einfache Positionieraufgaben. Dabei wird eine relative Verschiebung des Gutes zum Zahnriemen durch den hohen Reibwert in der Kontaktzone behindert. Abbildung 2: Abzugsband für biegeschlaffe Flachformkörper z. B. Folie, Textilien Zahnriemenrückenbeschichtungen mit geringen Reibwerten bestehen meist aus Polyamidgewebe und eignen sich besonders gut für den Staubetrieb. Hierbei dient der Zahnriemen selbst als Zwischenspeicher. Bei Bedarf können die Güter freigegeben werden. Dabei muss aber sichergestellt werden, dass auch die Auflagefläche des Fördergutes für einen solchen Einsatzzweck geeignet ist, da es zu einer Relativbewegung zwischen Gut und undZahnriemen kommt. Abbildung 3: Stauförderer Parallelförderer können sowohl als reibschlüssige als auch als formschlüssige Variante ausgeführt werden. Ihr Vorteil liegt darin, dass größere Güter, z. B. Flachglas, Bleche usw. auf zwei oder mehreren Riemen aufliegen und durch die gleiche Geschwindigkeit der synchron angetriebenen Riemen keine Verschiebung des Gutes erfolgt. Würde der Antrieb nicht über Zahnriemen erfolgen, sondern über Flachriemen bzw. Gurte, wäre außerdem ein Zugmittel in der Breite des Fördergutes notwendig. Daraus ergibt sich zusätzlich eine wesentliche Massereduzierung der Zugmittel für den Stückguttransport in der Fördertechnik. Abbildung 4: Parallelförderer für kraftschlüssigen Transport Allen diesen Varianten ist jedoch gemein, dass der Zahnriemen auf einer Stützschiene gleitet und die Normalkraft des Transportgutes in Verbindung mit Riemengeschwindigkeit und Reibwert eine Reibleistung und damit Wärme erzeugt. Zum gegenwärtigen Zeitpunkt fehlen exakte Angaben zu den Reibwerten für die einzelnen Gleitpaarungen. Auch ist eine Veränderung dieser Reibwerte bei Geschwindigkeits-, Temperatur-, und Belastungsänderung ungeklärt. Des Weiteren ist es auch notwendig, die Belastungsgrenzen für die Auslegung von Zahnriemenförderern zu definieren und das Verschleißverhalten zu kennen. Die derzeit üblichen Auslegungskriterien für diese fördertechnischen Anlagen sind Zugstrangfestigkeit und Zahnfußfestigkeit. Dabei bleibt jedoch die Erwärmung des Zugmittels und der Stützschiene durch die eingebrachte Reibleistung und den sich ändernden Reibwert unbeachtet. Insbesondere bei kurzen Förderstrecken mit großen Lasten bzw. hohen Transportgeschwindigkeiten ist die Gefahr von thermischen Überlastungen gegeben, welche zu erhöhtem Verschleiß bzw. zum Totalausfall der Anlage führen kann. Soll dieses zusätzliche Auslegungskriterium angewandt werden, sind Erkenntnisse aus den Gebieten der Tribologie und der Wärmelehre/Thermodynamik anzuwenden. Zum einen ist eine Bestimmung der entstehenden Reibleistung notwendig und zum anderen der abgeführte Wärmestrom zu ermitteln. Die sehr komplexen Zusammenhänge werden durch konstruktive und technologische Größen beschrieben, welche sich wiederum gegenseitig beeinflussen. 2. Reibwerte in der Gleitpaarung In DIN ISO 7148-2 sind die Besonderheiten bei der tribologischen Prüfung von polymeren Werkstoffen beschrieben. Dabei wird explizit darauf hingewiesen, dass die Prüfanordnung möglichst der praktischen Anwendung entsprechen sollte, um die Übertragbarkeit der Prüfergebnisse zu gewährleisten. Deshalb wurde ein Versuchsstand konzipiert, der die Kontaktverhältnisse von Zahnriemen und Stützschienen möglichst real abbildet (Abb.5). Abbildung 5: Schematischer Aufbau des Versuchsstandes Für die Untersuchung der Zahnriemenpaarung wird der Zahnriemen mit der Zahnseite nach oben aufgespannt. Auf die nach oben zeigende Zahnseite wird eine planparallele Platte des jeweiligen Gleitschienenmaterials aufgelegt. Die Flächenpressung der Paarung lässt sich über aufgebrachte Massestücke variieren und die Reibkraft über den Kraftsensor direkt über eine Schnittstelle zur Aufzeichnung an einen Rechner weiterleiten. Zur Ermittlung der Kontakttemperaturen wurden Bohrungen in das Gleitschienenmaterial eingebracht, die unmittelbar bis an die Oberfläche der Kontaktfläche reichen und mit Thermoelementen bestückt sind. Die Abstützung des Zahnriemens erfolgt auf einem Flachriemen, der wiederum auf einer Rollenbahn abrollt. Dadurch wird ein zusätzlicher Wärmeeintrag durch eine gleitende Abstützung vermieden. Die Gleitgeschwindigkeit und Flächenpressung auf die Paarung werden in Stufen variiert. Als Versuchszahnriemen dienten PU-Riemen mit und ohne zahnseitiger Polyamidbeschichtung der Abmessung 1250 x 25 T10. Abbildung 6: Reibwertmessungen an PU-Zahnriemen ohne Beschichtung (Kurzzeitversuche) Die ermittelten Messwerte der Gleitreibungszahl µ für verschiedene PU-Zahnriemen – Stützschienenkombinationen sind in Abbildung 6 dargestellt. Die schraffierten Balken geben die Reibungszahlempfehlungen von Herstellern sowie aus Literaturquellen für diese Paarungen wieder. Oft wird jedoch darauf hingewiesen, dass für einen konkreten Anwendungsfall eigene Untersuchungen durchzuführen sind. Die grauen Balken geben die bei einer Versuchsdauer von bis zu 8 Stunden ermittelten Reibungszahlen wieder. Dabei wurden sowohl die Flächenpressungen als auch die Gleitgeschwindigkeiten variiert. Bei einigen Paarungen (Holz (Abb.7)) konnte ein sehr starker abrasiver Verschleiß am Zahnriemen festgestellt werden. Diese Werkstoffkombinationen sind nur für geringe Belastungen geeignet. Abbildung 7: Oberfläche PU-Zahnriemen, verschlissen an Schichtholz Die Paarungen in Verbindung mit Stahl- bzw. Aluminiumstützschienen neigen zu stick-slip- Erscheinungen verbunden mit starker Geräuschentwicklung. Aufgrund der relativ hohen Reibungszahlen wurden keine Dauerversuche an unbeschichteten PU-Zahnriemen durchgeführt. Für die weiteren Untersuchungen wurden ausschließlich polyamidbeschichtete Zahnriemen verwendet. In Abbildung 8 werden die Ergebnisse der Reibwertuntersuchungen an PAZ-Zahnriemen (Polyamidgewebebeschichtung auf der Zahnseite) dargestellt. Die schraffierten Balken stellen wiederum die bisherigen Empfehlungen dar, die grauen Balken die ermittelten Messwerte im Kurzzeitversuch (bis 8 Stunden) und die schwarzen Balken die Messwerte im Langzeitversuch (zwischen 7 und teilweise bis zu 100 Tagen). Hier ist die Übereinstimmung der Reibungszahlen zwischen Empfehlungen und Kurzzeitmesswerten sehr gut. Der deutliche Anstieg der Werte im weiteren Verlauf der Untersuchungen deutet daraufhin, dass der tribologische Einlauf innerhalb von 8 Stunden meist noch nicht abgeschlossen ist und dass nach fortlaufender Belastung weitere tribologische Phänomene die Kontaktverhältnisse ändern. Abbildung 8: Reibungszahlen an polyamidbeschichteten PU-Zahnriemen (PAZ) in Verbindung mit verschiedenen Gleitschienen Bei den Paarungen mit einer Stützschiene aus Stahl, Aluminium oder Schichtholz konnte eine polymere Filmbildung auf der Gleitfläche beobachtet werden. In Abbildung 9 und 10 ist die Entwicklung am Beispiel von Stahlproben zu sehen. Gemeinsam bei diesen Paarungen ist die fortschreitende Schichtbildung, verbunden mit einer Reibwerterhöhung. Der Verschleiß der Gewebeschicht am Zahnriemen setzt bei größeren Reibungszahlen ein, was zu deren weiterer Erhöhung führt Ein weiterer Einsatz führt zur vollständigen Abtragung der Gewebeschicht und damit zu einer neuen tribologischen Paarung PU-Zahnriemen ��� Polymerschicht. Abbildung 9: beginnende polymere Ablagerung auf Stahlprobe Rz28 Abbildung 10: nahezu geschlossener polymerer Film auf Stahlprobe Rz28 Am Beispiel der Paarung PAZ Zahnriemen – Stahlstützschiene wird die Entwicklung der Reibungszahl über die Zeit des Gleitkontaktes in Abbildung 12 dargestellt. Dabei wurde die Oberflächenrauigkeit (Rz 6,3; Rz 28) durch entsprechende Bearbeitungen variiert. Der relativ starke Anstieg an der Paarung Rz 6,3 kann zum einen auf die hohe Gleitgeschwindigkeit und den damit entsprechend langen Gleitweg zurückgeführt werden, zum anderen auf den höheren adhäsiven Anteil durch die relativ glatte Oberfläche und der damit erhöhten Kontaktfläche. Abbildung 11 zeigt einen verschlissenen Zahnkopf. Abbildung 9: Verschlissene Zahnkopfflanke, PAZ - Stahl Abbildung 10: Änderung der Reibungszahl im zeitlichen Verlauf an der Paarung ZR PA – Stahl Die Erhöhung der Reibungszahlen an der Paarung PE UHMW - polyamidbeschichteter Zahnriemen kann nicht unmittelbar auf direkte Verschleißerscheinungen zurückgeführt werden. Sowohl die Gleitfläche als auch der Zahnriemen weisen auch nach längerem Kontakt keine sichtbaren Schäden auf: Es bildet sich kein polymerer Film auf der PE- UHMW- Gleitfläche heraus. In Abbildung 11 wird die Änderung der Reibungszahl dargestellt. Es wurden Paarungen mit steigendem p•v-Wert gewählt. Mit höheren Werten für die eingebrachte Leistung pro Flächeneinheit ist ein schnellerer Anstieg der Reibungszahlen zu verzeichnen. Abbildung 11: Änderung der Reibungszahl im zeitlichen Verlauf an der Paarung ZR PAZ – PE UHMW Die Erhöhung der Reibwerte zieht nicht nur eine Steigerung der Antriebsleistung nach sich, sondern auch eine Zunahme der Reibleistung und damit einen Anstieg der Kontakttemperatur. Hat diese einen bestimmten Wert erreicht, kommt es zum Aufschmelzen der Gleitflächen und damit zum Totalausfall der Paarung (Abbildungen 14, 15, 16). Ebenfalls tritt durch die Reibwerterhöhung eine höhere Belastung des Zugstranges und der Zahnfüße im Einlauf des Zahnriemens auf. Für eine konstruktive Auslegung entsprechender Zahnriemenförderer ist dies durch entsprechende Sicherheitsfaktoren zu berücksichtigen. Abbildung 12: Aufgeschmolzene PE-Laufschiene, 2-fach vergrößert Abbildung 13: geschmolzene Faserbündel 20- fach Abbildung 14: zerstörtes Gewebe in Folge thermischer Überlastung 3. Thermische Zusammenhänge Die Temperaturerhöhung in der Wirkstelle zwischen Zahnriemen und Stützschiene kann im stationären Zustand in der vereinfachten Form: p Flächenpressung v Gleitgeschwindigkeit µ Reibungszahl A Kontaktfläche / jeweilige Oberfläche a Wärmeübergangskoeffizient l Wärmeleitwert Abbildung 15: Kontaktmodell dargestellt werden. Dabei werden verschiedene Vereinfachungen angenommen: • Reibleistung wird auf die gesamte Fläche gleichmäßig verteilt, • Wärmestrom erfolgt nur in Normalenrichtung zur Gleitfläche, • konstante Reibleistung über die gesamte Zeit, • keine Ableitung des Wärmestromes über Stirn- und Seitenflächen, • eingeschwungener Gleichgewichtszustand der Temperaturverteilung, • gleiche Temperatur über der jeweiligen Oberfläche, • gleiche Strömungsverhältnisse und -bedingungen an der jeweiligen Oberfläche, • konstante - und - Werte über der gesamten Fläche. Der Temperaturverlauf für verschiedene Materialpaarungen ist in Abbildung 16 dargestellt. Der unterschiedliche Verlauf der Kurven kann mit den verschiedenen eingebrachten Reibleistungen durch sich unterschiedlich einstellende Reibungszahlen und durch die unterschiedlichen Wärmeleitwerte und Wärmekapazitäten der Gleitschienen erklärt werden. Ist eine stationäre Temperatur erreicht, so gilt vereinfacht die Vorstellung von Abbildung 15. Abbildung 16: thermischer Einlauf verschiedener Stützschienenmaterialien Die sich einstellende Gleitflächentemperatur ist im Wesentlichen von den in Abbildung 17 dargestellten Einflüssen abhängig. Da die Kontakttemperatur die Grenztemperatur (ca. 65°C) nicht überschreiten darf, um eine thermische Schädigung zu vermeiden, sind die entsprechenden Einflussgrößen zweckmäßig zu wählen. Die Parameter Gleitgeschwindigkeit und Flächenpressung sind meist durch die technologischen Erfordernisse vorgegeben, die Reibungszahl stellt sich entsprechend der tribologischen Paarung ein und die Wärmeleitfähigkeit ist ein kaum zu verändernder Stoffwert. Die Einflussmaßnahmen erstrecken sich also meist auf die Schichtstärke s der Abstützung und den Wärmeübergang zur Umgebung. Abbildung 17: Technologische und konstruktive Einflüsse auf die Gleitflächentemperatur in der Wirkstelle 4. Zusammenfassung Die Kenntnis der sich nach einer entsprechenden Einlaufphase einstellenden Reibungszahlen für verschiedene Zahnriemen – Stützschienenkombinationen ist für die Anwender und Entwickler wichtig, da damit eine optimale Auslegung von Zahnriemenförderern erfolgen kann. Diese optimale Auslegung realisiert dann in der Anwendung eine ökonomische Lebensdauer bei verbesserter konstruktiver Auslegung. Die bisher weitgehend unbeachtete Temperaturerhöhung in der Gleitschienen – Zahnriemenkombination durch die eingebrachte Reibleistung sollte zukünftig ein weiteres Auslegungskriterium darstellen. Eine erste Annäherung an dieses Problem kann durch die Form: p Flächenpressung v Gleitgeschwindigkeit µ Reibungszahl A Kontaktfläche / jeweilige Oberfläche K Wärmeabgabekoeffizient DT max. zul. Temperaturerhöhung K= f (µ, p, v, Gleitschienenmaterial, Zahnriemenausführung, Maschinenkonstante…) gezeigt werden. Für die Ermittlung des Wärmeabgabekoeffizienten sind entsprechende Untersuchungen durchzuführen und Zusammenhänge zu ermitteln. Bestimmte Praxiseinflüsse (Umgebungstemperaturschwankungen, Verschmutzung, Stöße, Montagefehler) sind in die bisherigen Untersuchungen noch nicht eingeflossen, sollten aber nicht unbeachtet bleiben. Durch eine vorteilhafte Auslegung der Förderanlagen kann eine höhere Zuverlässigkeit bei geringeren Wechselintervallen und niedrigeren Kosten für den Betrieb erreicht werden.
Resumo:
Umschlagleistung, Stellplatzzahl und Stellplatzkosten sind häufig für Lagersysteme die bedeutendsten Kenngrößen. Die Einflussfaktoren auf die Umschlagleistung lassen sich in technische und organisatorische Größen einteilen. Während für die technischen Parameter eine Reihe von Berechnungsvorschriften existieren, werden die organisatorischen Einflussgrößen meist nur qualitativ beschrieben oder durch Simulationsmodelle in speziellen Einzelfällen untersucht. Es soll hier eine Methode vorgestellt werden, die es ermöglicht die Umschlagleistung unter Berücksichtigung ausgewählter organisatorischer Einflussgrößen durch Nutzung von Simulationsdatenbanken zu berechnen. Die allgemeingültigen Simulationsergebnisse können mittels eines Berechnungsprogramms auf jedes beliebige Hochregallager übertragen werden. Dafür sind neben MS Excel keine weiteren Softwareprodukte erforderlich. 1. Einleitung Die produktionswirtschaftlichen Anforderungen an die Unternehmen sind zunehmend geprägt durch Globalisierung und damit durch eine zunehmende Komplexität sowie vertiefte Arbeitsteiligkeit. Es entsteht eine zunehmend breitere Streuung der Fertigungsstandorte und Kooperationsbeziehungen. Es gibt letztlich mehr Lager- und Umschlagprozesse in der Lieferkette. Andererseits bringt der erhöhte Qualitäts- und Kostendruck steigende Fixkosten mit sich, er zwingt zur ständigen Rationalisierung der Materialwirtschaft. Es besteht der Zwang zum Einsatz neuer technisch-elektronischer Mittel zur Kontrolle und Steuerung der logistischen Ketten. Im Lager bedeutet das eine zunehmende Nutzung der Informations- und Kommunikationstechnik zur Lager- und Fertigungssteuerung, auch in Verbindung mit Forderungen der Rückverfolgbarkeit der Produkte. An die Logistikleistungen werden damit Anforderungen wie Schnelligkeit, Qualität und Kostenminimierung gestellt. Letztlich bestehen die Warenbereitstellungs- und Verteilsysteme aus der technischen Grundstruktur, dem Lagertyp und dessen Geometrie sowie der dabei einsetzbaren Bedientechnik und deren kinematischen Daten. Der organisatorische Rahmen dieser Systeme ist gekennzeichnet durch die Nutzung diverser Ein- und Auslagerstrategien, die auch wesentlich Kosten und Leistungen (Umschlagleistung) des zu betrachtenden Lagersystems bestimmen. Aufgrund der genannten Forderungen muss es gelingen, aus dem eingesetzten technischen System durch organisatorisch effizienten Betrieb maximale Leistung bei gleichzeitig minimal eingesetzten Kosten zu erzielen. Neben den Investitionskosten sind bei der Planung von automatischen Lagersystemen die erreichbaren mittleren Spielzeiten der Bedientechnik von entscheidender Bedeutung, um die erforderliche Umschlagleistung des Lagers zu gewährleisten. Hierzu existieren eine Reihe von Berechnungsvorschriften und –normen. Diese Berechnungen berücksichtigen jedoch nicht die Auswirkungen der Lagerorganisation, wie beispielsweise fahrzeitminimale Kombinationen von Ein- und Auslageraufträgen bei Doppelspielen, Zonierungsmaßnahmen, die Auswirkungen von verschiedenen Füllgraden des Lagers oder Lagerplatzstrategien. 2. Stand der Technik 2.1. Lagertypen Abbildung 1: Systematische Einteilung der Lagertypen In Abbildung 1 sind verschiedene Lagertypen dargestellt und nach Kriterien eingeteilt. Soll eine Einschränkung hinsichtlich am Markt häufig vorkommender automatischer Palettenlager getroffen werden, so sind besonders die in der Abbildung hervorgehobenen Typen zu nennen. Eine Auswahl der einzelnen Lagertypen erfolgt dann anhand von Kosten, Umschlagleistung und bei Kompaktlagern vorrangig anhand von Flächen- und Raumnutzungsgrad. Werden die Kostenunterschiede bei Personal, Rechentechnik und Steuerungssoftware in den verschiedenen Lagertypen und -ausführungen der jeweiligen Typen vernachlässigt, unterscheiden sich die Gesamtkosten der Lager lediglich in der Bedientechnik sowie in den statisch bedingten Kosten der Regalkonstruktion. Die wichtigsten Kosteneinflüsse auf die Regale sind wiederum Bauhöhe und Bauart (Regalkonstruktion oder selbsttragendes Bauwerk). Abbildung 2 zeigt die zu erwartenden Umschlagleistungen1) der verschiedenen Lagertypen in Abhängigkeit der benötigten Stellplatzanzahl. Die darauf folgende Abbildung 3 zeigt die zu erwartenden Investitionskosten1) je Stellplatz. Die berücksichtigten Kenngrößen sind nachstehend dargestellt. Die abgebildeten Kurven machen deutlich, dass insbesondere Umschlagleistung der Lager und deren Flächen- bzw. Raumnutzungsgrad gegensätzlich verlaufen. Somit sind auch die Einsatzgebiete der Lagertypen voneinander abgrenzbar. Während Hochregallager für Anwendungsfälle mit hohem Gutumschlag in Frage kommen, werden die Kompaktlager eher in Objekten mit begrenztem Platz oder hohen Raumkosten (bspw. Kühllager) eingesetzt. Somit sind Kompaktlager auch häufig für die Umplanung bzw. der notwendigen Vergrößerung der Lagerkapazität innerhalb einer bestehenden baulichen Hülle interessant. Abbildung 2: Umschlagleistungen der verschiedenen Lagertypen Abbildung 3: Investitionskosten der einzelnen Lagertypen 2.2. Einzel-/ Doppelspiele Um anhand der Technik und der geometrischen Verhältnisse im Lager die höchstmögliche Umschlagleistung zu erzielen, ist es sinnvoll, Doppelspiele (DS) zu generieren. Somit ist nicht wie bei Einzelspielen (ES) je umgeschlagene Ladeeinheit eine Leerfahrt erforderlich, sondern nur je zweiter Ladeeinheit. Das Bediengerät fährt also vom Einlagerpunkt direkt zum Auslagerpunkt, ohne zum Übergabepunkt zurückkehren zu müssen. Diese Vorgehensweise setzt die Kenntnis der nächsten Fahraufträge und gegebenenfalls die Möglichkeit der Veränderung derer Reihenfolge voraus. Für eine Optimierung der Umschlagleistung ist die bei DS entstehende Leerfahrt (Zwischenfahrstrecke) und damit die Zwischenfahrzeit zu minimieren (vgl. 3.5). Nachfolgend beschriebene Untersuchungen beziehen sich jeweils auf Doppelspiele. Abbildung 4: Darstellung der anzufahrenden Lagerplätze in der Regalwand,links: Einzelspiel, rechts: Doppelspiel 2.3. Berechnungsvorschriften für Umschlagleistungen von Lagern Es existieren eine Reihe von Vorschriften zur Berechnung der Umschlagleistung von Lagern, exemplarisch sind drei Berechnungsvorschriften dargestellt. Die Richtlinie VDI 3561 [VDI3561] ermöglicht die Berechnung der Spielzeit auch für Doppelspiele. Dazu werden zwei Referenzpunkte festgelegt, die den Aus- bzw. Einlagerpunkt darstellen. Ein Doppelspiel besteht dann aus der Summe folgender Einzelzeiten: • der Hinfahrt vom Übergabepunkt zum Einlagerpunkt (P1), • der Leerfahrt vom Ein- zum Auslagerpunkt (P2) und der • Rückfahrt vom Auslagerpunkt zum Übergabepunkt (vgl. Abb.4 rechts). Die Summe dieser Einzelzeiten wird danach mit der Summe der Übergabezeiten addiert. Der Unterschied der Richtlinie und der Berechnungsvorschrift nach [Gud00] bestehen im wesentlichen aus der Lage der Ein- und Auslagerpunkte. Fahrzeitberechnung nach VDI 3561 P1 ; P2 Fahrzeitberechnung nach Gudehus 1) P1 ; P2 1)Annahme: Vernachlässigung von Totzeiten, Lastaufnahmefaktor = 1 Wird davon ausgegangen, dass in Abhängigkeit der Gassengeometrie immer nur eine der beiden Fahrzeitanteile (vertikal bzw. horizontal) spielzeitbestimmend ist, so ergeben sich beide Fahrstrecken zu 4/3 der jeweiligen Gesamtabmessung. Der Unterschied der beiden Berechnungsvorschriften liegt lediglich in der Aufteilung der Gesamtfahrstrecke auf die Teilfahrstrecken Hin-, Rück- bzw. Zwischenfahrt. Da jedoch die Fahrzeit zu den Anfahrpunkten in der Regel nicht von der gleichen Fahrzeitkomponente bestimmt wird, kommt es in der Praxis zu Unterschieden im Berechnungsergebnis. Die unter dem Titel „Leistungsnachweis für Regalbediengeräte, Spielzeiten“ stehende Norm FEM 9.851 [FEM9.851] beschäftigt sich ebenfalls mit der Berechnung von Spielzeiten von Regalbediengeräten (RBG). Dabei werden sechs verschiedene Anwendungsfälle generiert, die am häufigsten in der Praxis vorkommen. Diese unterscheiden sich insbesondere in der Lage der Übergabepunkte für die Ein- und Auslagerung. Dabei werden die Punkte sowohl horizontal als auch vertikal verschoben. Es werden hierbei auch Fälle betrachtet, in denen der Auslagerpunkt nicht mit dem Einlagerpunkt übereinstimmt, sich beispielsweise auch an dem gegenüberliegenden Gassenende befinden kann. Wird der einfachste Fall betrachtet, dass sich der Übergabepunkt für die Ein- und Auslagerung übereinstimmend an einer unteren Ecke der Gasse befindet, stimmen die Berechnungsformeln mit [Gud00] weitgehend überein. 2.4. Kritik und Untersuchungsansatz Die Berechnung der mittleren Spielzeit der einzelnen Lagergassen durch die beschriebenen Normen erfolgt in der Regel ohne die Berücksichtigung der Geschwindigkeitsdiagonalen, deren Steigung c durch nachstehendes Verhältnis gegeben ist. Eine genaue Betrachtung der verschiedenen Gassengeometrien im Verhältnis zu den Geschwindigkeiten der Bediengeräte zeigt, dass es bei ungünstiger Lage der Geschwindigkeitsdiagonalen in der Regalwand zu Abweichungen der Berechnungsnormen von der tatsächlich zu erwartenden mittleren Spielzeit kommt. Im praktischen Lagerbetrieb wird mit verschiedenen Maßnahmen der Lagerorganisation versucht, die Umschlagleistung zu erhöhen. Diese Maßnahmen können jedoch mit den hier beschriebenen Normen und Berechnungsmethoden nicht berücksichtigt werden. Da Zonierungen, Lagerplatzstrategien oder Reihenfolgeoptimierungen der Ein- und Auslageraufträge (Zuordnungsproblem) Einfluss auf die Umschlagleistung des Lagers haben, sollten sie auch bei der Berechnung berücksichtigt werden. In den zahlreichen Veröffentlichungen mit dem Ziel der Erhöhung der Umschlagleistung eines Lagerbereiches finden sich häufig Darstellungen, die einzelne Auswirkungen der Lagerorganisation untersuchen. Dabei bleiben aber die gegenseitigen Beeinflussungen und Wechselwirkungen meist unberücksichtigt. Um dennoch solche Einflussgrößen realitätsnah berücksichtigen zu können, werden üblicherweise Simulationsmodelle erstellt, die den jeweiligen Anwendungsfall nachbilden. Die Erstellung solcher Modelle benötigt jedoch neben der entsprechenden Software Zeit und verursacht damit weitere Kosten. Aus diesem Grund ist ein solches Vorgehen erst bei einem bestimmten Grad an Komplexität der Anlage sinnvoll. Damit ist die Übertragbarkeit solcher Modelle auf verschiedene Anwendungsfälle nicht immer gegeben. 3. Dynamische Spielzeitberechnung 3.1. Vorgehen und Abgrenzung zum Forschungsstand Um die Auswirkungen der Lagerorganisation auf die Umschlagleistung sinnvoll abschätzen zu können, wurde ein allgemeingültiges Simulationsmodell erstellt. Dieses Modell startet sich nach vorgeschriebener Simulationszeit selbstständig neu mit vordefinierten Änderungen der Eingangsgrößen wie z. B.. Geschwindigkeiten und Beschleunigungen der Bedientechnik in Abhängigkeit der Gassengeometrie. Nacheinander konnten somit ausgewählte, in das Modell implementierte Lagerorganisationsformen untersucht werden. Der Unterschied zu bisherigen in der Literatur dokumentierter Untersuchungen besteht in der Berücksichtigung gegenseitiger Wechselwirkungen der Lagerorganisation. Bisher wurden dagegen die verschiedenen Strategien und Regeln im Lagerbetrieb meist nur losgelöst voneinander unter einem speziellen abgegrenzten Blickwinkel betrachtet. Um die Menge an Simulationsergebnissen für einen praktischen Einsatz zur Verfügung zu stellen, wurde ein Programm auf Basis von MS Excel erstellt, das die relevanten Simulationsdaten aufarbeitet und dem Anwender einfach und übersichtlich zur Verfügung stellt. Es ist somit möglich, die gefundenen Simulationsergebnisse auf verschiedenste Hochregal-Lagersysteme zu übertragen. Das Berechnungsmodell wurde an einem existierenden Hochregallager getestet. Es können Aussagen hinsichtlich der optimalen, d. h. spielzeit- und kostenminimalen Lagergeometrie unter Berücksichtigung gegebener Randbedingungen getroffen werden. 3.2. Übergabepunkte Neben den verschiedenen untersuchten Lagerstrategien wurde zunächst nach Möglichkeiten gesucht, die Umschlagleistungen des Typs der herkömmlichen Hochregallager unter technischen Gesichtspunkten zu verbessern. Dabei wurde v. a. die Verlegung des Übergabepunktes in die Mitte der Gassenwand untersucht. Dies hat das Ziel, die mittleren Verfahrwege der Bedientechnik im Lager zu halbieren. Abbildung 5: Maximale Verfahrwege der Bedientechnik in der Regalgasse Die Ver- und Entsorgung des Materials an den Übergabeplätzen mit Lagergut kann hierbei durch zwei verschiedene Möglichkeiten gelöst werden: • Zuführung in x- oder y-Richtung, • Zuführung in z-Richtung. Ersteres Vorgehen führt in Abhängigkeit der Anzahl der Zu- und Abführkanäle zu einem großen Verlust an Lagerplätzen. Bei letzterem Vorgehen liegen die Versorgungskanäle senkrecht zu den Verfahrwegen der Bedientechnik. Das hat den Vorteil, dass die Versorgung der Übergabeplätze über die gleichen Ver- und Entsorgungskanäle erfolgt und somit erheblich weniger Lagerplatz benötigt wird. Dieses Vorgehen benötigt jedoch neben erhöhtem Steuerungsaufwand eine veränderte konstruktive Gestaltung der Gassenübergänge z. B. durch klappbare Brücken oder ein entsprechendes aus- und einfahrbares Gabelsystem. Da sich hierbei die RBG und das Lagergut behindern können, wurden Simulationsuntersuchungen zur Minimierung der Wartezeiten der RBG durchgeführt. Je mehr Kanäle für die Ein- und Auslagerung zur Verfügung stehen, umso kürzer sind die Wartezeiten der Bediengeräte. Dabei bieten sich insbesondere zwei Optimierungsstrategien an, die diese Wartezeiten minimieren können. Einerseits verursachen gassenreine Kanäle keine zusätzlichen Wartezeiten der RBG, da die benötigte Palette im jeweiligen Einlagerungskanal zur Verfügung steht. Zudem reduzieren sich die Einlagerungskanäle, je weiter die Mitte des Lagerblocks erreicht wird. Andererseits steigen die Wartezeiten der RBG schnell an, je ungünstiger das Verhältnis von Gassenanzahl zu Einlagerungskanälen wird. Dies gilt auch bei sinnvoller Begrenzung der Gassenanzahl pro Einlagerungskanal. Abbildung 6: Reihenfolgeoptimale Einschleusung der Einlagerpaletten, keine Beschränkung der Gassen pro Kanal Ist die Zahl der Gassen des Lagerblockes größer als die Zahl der Einschleuskanäle, so ist eine optimale Reihenfolge der Paletten umzusetzen, bei der die Paletten gleichmäßig auf alle Kanäle verteilt werden. Abbildung 6 zeigt die so erreichten mittleren Wartezeiten der RBG. Hier ist der Abstand zwischen zwei Paletten, die in den gleichen Gang eingelagert werden müssen, am größten. Dies führt zu minimalen Stillstandszeiten der RBG. Für die Ausschleusung der Paletten aus dem Lagerblock ist jedoch ein Kanal ausreichend. Eine technische Realisierbarkeit (auch hinsichtlich der Funktionssicherheit der Gassenbrücken) ist zu prüfen. Eine wirtschaftliche Umsetzung einer solchen Beschickung der RBG, so hat der Versuch gezeigt, macht Sinn. Es kann hierbei bei günstiger Lage der Übergabepunkte in der Regalwand nahezu 50 % der Fahrzeit eingespart werden. Bei vergleichsweise langen und hohen Gassen kann damit die mittlere Spielzeit teilweise um über 25 % gesenkt werden. 3.3. Lagerplatzstrategien Es wurden insbesondere zwei verschiedene Strategien untersucht. Einerseits wurde zur besseren Vergleichbarkeit die chaotische Lagerplatzauswahl (nachfolgend: Strategie „Chaotisch“) sowie die in der Literatur auch als „Kürzeste Fahrzeitregel (KFZ)“ bezeichnete Strategie [Gla05]. Letztere soll nachfolgend aufgrund der Auswahl des jeweils vordersten Lagerplatzes als Strategie „KFZ“ bezeichnet werden. In Abbildung 7 sind die bei zunehmender Gassengeometrie sich in Abhängigkeit der Strategien vergrößernden Fahrzeitunterschiede dargestellt. Damit ist bei höheren bzw. längeren Gassen die Strategie „KFZ�� empfehlenswert. Abbildung 7: Vergleich der Strategien „Chaotisch“ und „KFZ“ bei unzonierter Lagergasse In ist weiterhin zu erkennen, dass der Einfluss der Beschleunigung bei längeren Fahrstrecken abnimmt. Insbesondere bei kleinen Gassenabmessungen kann der Beschleunigungseinfluss nicht vernachlässigt werden. So sind in Abbildung 8 Gassenabmessungen angegeben, von wo ab die Beschleunigung der Bedientechnik der jeweiligen Richtungskomponente vernachlässigbar ist. Die Grenze des Beschleunigungseinflusses wurde mit 5 % der Gesamtfahrzeit willkürlich festgelegt. Es ist zu erkennen, dass der Beschleunigungseinfluss mit höherer Geschwindigkeit zunimmt, da das RBG eine längere Zeit und damit auch eine längere Fahrstrecke benötigt, um die Maximalgeschwindigkeit zu erreichen. Abbildung 8:Vernachlässigungsgrenzen der Beschleunigung Anhand des Diagramms ist weiterhin zu erkennen, dass die Beschleunigungen bei in der Praxis geläufigen Gassenlängen nicht zu vernachlässigen sind. Ein zur Validierung der Simulation genutztes Lager (ca. 80 x 40m, vx ≈ 1,8 m/s, vy ≈ 0,8 m/s) liegt hinsichtlich der Gassenlänge über der festgelegten Grenze, hinsichtlich seiner Höhe jedoch darunter. Somit sind auch hier die Beschleunigungen nicht zu vernachlässigen. 3.4. Zonierung Die häufigste und bekannteste Form der Zonierung in der Lagergasse ist die ABC-Zonierung. Diese geht davon aus, dass durch eine Platzierung der umsatzstarken Paletten (Schnelldreher) in der Nähe des Übergabeplatzes die mittleren Fahrstrecken der Bedientechnik vermindert werden. Abbildung 9 zeigt das Verhältnis der mittleren Anfahrpunkte in Abhängigkeit der Zonierungsart. Die Zahlenkombination (80/20) kennzeichnet bspw. 80 % des Gesamtumsatzes zu dem ihn verursachenden 20 % Mengenanteil der gesamten eingelagerten Palettenzahl [Pfo96]. Abbildung 9: Mittlere Anfahrpunkte relativ zu den Gesamtabmessungen, chaotische Lagerplatzvergabe Abbildung 10 stellt den Einfluss des Zusammenwirkens von Lagerplatzstrategien und der Zonierung dar. Dabei ist zu erkennen, dass sich bei ungünstiger Sortenverteilung von 80/80 (Umsatz-/ Mengenanteil) das Verhältnis der mittleren Fahrzeit gegenüber der unzonierten Gasse bei größeren Abmessungen erhöht. Bei günstigem Zonierungsfall (80/20) ist dieser Zusammenhang nicht zu beobachten. Hier bringt eine Zonierung Vorteile. Weiterhin ist zu erkennen, dass die Vorteile einer Zonierung bei gleichzeitig verbesserter Lagerplatzstrategie geringer sind. Abbildung 10: Zonierungsabhängige Auswirkungen der Lagerplatzstrategien auf die Fahrzeiten 3.5. Optimierung der Auftragsreihenfolge Die beschriebenen Lagerplatzvergabestrategien und Zonierungen haben das Ziel, durch Verminderung der Anfahr- und Rückwege der Bedientechnik die Fahrstrecken und damit die Fahr- und Spielzeiten zu verringern. Eine Optimierung der Reihenfolge bzw. der Zuordnung der Ein- und Auslageraufträge bei der Bildung von Doppelspielen soll dagegen die Strecken der Leerfahrten zwischen den kombinierten Lagerplätzen verringern. Auch hier konnten Auswirkungen bspw. der Zonierung nachgewiesen werden. Abbildung 11: Optimierung der Zwischenfahrzeit, Fahrzeit im Vergleich zu unoptimierter Fahrzeit Abbildung 11 zeigt die optimierten Zwischenfahrzeiten im Vergleich zu unoptimierten Zwischenfahrzeiten. Da eine Testung aller Möglichkeiten (Permutation) zu unzumutbarem Rechenaufwand führt, konnten hier nur Kombinationen von maximal 8 x 8 Aufträgen durchgeführt werden. Um dennoch auch größere Auftragspools berechnen zu können, wurde auf das Vogelsche Approximationsverfahren zurückgegriffen. Die dargestellten Kurvenverläufe stellen eine idealisierte Kennlinie der gefundenen Ergebnisse dar. Um in der Praxis eine solche Optimierung durchführen zu können, müssen die jeweils folgenden Aufträge bekannt sein. 3.6. Füllgrad Abbildung 12 zeigt Untersuchungen zum Füllgrad des Lagers. Minderungen der Umschlagleistungen waren ab einem Füllgrad von ca. 80% zu erkennen. Es konnten zwei Knickpunkte der Kurve der Umschlagleistung beobachtet werden. Der Punkt P1 stellt die Länge dar, unter der eine Verringerung der Leistung des Lagers eintritt. Der Punkt P2 beschreibt die Länge, unter der das Absinken der Umschlagleistung des Lagers verstärkt wird. Abbildung 12: Auswirkungen des Füllgrades des Lagers auf die Umschlagleistung 3.7. Berechnungsprogramm Um die Simulationsergebnisse auf beliebige Anwendungsfälle übertragen zu können, wurde ein Berechnungsprogramm erstellt. Durch Berechnung der wirksamen Gassenlänge werden die simulierten Fahrzeiten durch Interpolation auf die Daten des Anwendungsfalls übertragen. Es fließen insbesondere auch die untersuchten Auswirkungen der Lagerorganisation in die Berechnungen ein. Zur besseren Vergleichbarkeit der Berechnungsergebnisse sowie zur Definition der durch die Lagerorganisation erreichten Leistungserhöhung, wurden die Ergebnisse den Berechnungsnormen gegenübergestellt. Als weiteres Ergebnis des Programms können die Kosten des Lagers abgeschätzt werden. Dabei werden die Kosten für das Lager insgesamt, als auch die je Lagerplatz berechnet. Zunächst müssen bei zu projektierenden Lagern die Abmessungen, die Anzahl der Lagergassen und die technischen Daten der Bedientechnik festgelegt werden. Die Geometrie der Lagergasse bestimmt sich in diesem Stadium durch die Anzahl der benötigten Stellplätze und der räumlichen Restriktionen. Dabei werden unter Berücksichtigung der eingegebenen Grenzabmessungen für Breite, Tiefe und Höhe die Anzahl der Regalgassen berechnet. Hierzu werden durch den Einsatz von teuren RBG lange und hohe Gassen bevorzugt. Die Gassen werden so gestaltet, dass sowohl die Gassengeometrie optimal ist, als auch die maximale Bedienhöhe der Geräte erreicht wird. Um die geforderte Lagerplatzanzahl zu erlangen, werden Vielfache der so dimensionierten Regalgasse gebildet, bis die benötigte Stellplatzanzahl erstmals überschritten ist. Grenzen der Abmessungen können bspw. durch die einzusetzende Bedientechnik oder bereits bestehende Lagerhülle gegeben sein. 4. Zusammenfassung und Ausblick Anhand der Untersuchungen wurde eine Möglichkeit aufgezeigt, die es dem Anwender ermöglicht, ohne zusätzliche Hilfsmittel und spezielle Kenntnis von Simulationsprogrammen die Umschlagleistung eines Lagers zu berechnen. Er greift durch die Nutzung eines Berechnungsprogramms, das in MS Excel- VBA (Visual Basic for Applications) erstellt wurde auf eine Simulationsdatenbank zu. Diese Simulationsdatenbank berücksichtigt wesentliche organisatorische und technische Daten eines Lagersystems. Der Bediener kann somit die Umschlagleistung für seinen Planungsfall unter Berücksichtigung der Lagerorganisation sowie deren Wechselwirkungen berechnen. Um das Einsatzgebiet der Methode zu erweitern und allgemeiner zu gestalten sind weitere Vervollständigungen der Maßnahmenbibliothek sinnvoll. Zum Anderen ist es möglich, die Simulationsdatenbank um andere Lagertypen sowie mehrfachtiefe Einlagerungen zu erweitern.
Resumo:
Stetig steigende Funktionalitäten, intelligente Materialien, eine möglichst geringe Leistungsaufnahme verbunden mit kleinem Volumen und geringem Gewicht sind die zentralen Anforderungen u.a. der Medizintechnik und der Telekommunikation. Um diesen Bedarf mit industriellen Fertigungsverfahren abzudecken, startete das Unternehmen nach seiner Gründung in Rumeln bereits 1996 mit dem Aufbau der RMPD® Technologiefamilie. Heute sichern diese Technologien, mit denen die direkte Serienproduktion auf Basis der CAD Kontruktionsdaten für Mikrosysteme und –komponenten werkzeuglos erfolgt, einem internationalen Kundenkreis Markterfolge mit dem Einsatz patentierter Fertigungssysteme. microTEC ist an zwei Standorten als Auftragsproduzent für Unternehmen u.a. aus den Bereichen Sensorik, Telekommunikation, Medizintechnik und Biotechnologie tätig. Mit den RMPD® Technologien profitieren die Kunden auch durch die schnelle Anpassungsfähigkeit an sich ändernde Marktbedingungen und Verbraucherwünsche. Über 300 Kunststoffe mit den unterschiedlichsten Eigenschaften stehen für mikroelektronische Packaging-Dienstleistungen und Auftragsfertigung von Mikrosystemen zur Verfügung, zu den Produkten gehören z.B. Mikrogetriebe mit selbstschmierenden Zahnrädern und Lab-on-a-Chipsysteme, die mit dem Einsatz hydrophiler Kunststoffe die Kapillarwirkung auch in 3D nutzen. Die beiden Geschäftsführer Dipl. Ing. Reiner Götzen und Andrea Reinhardt, sowie der Prokurist Dr. Ing. Helge Bohlmann stehen für eine konzernunabhängige, kundenorientierte Strategie und verfügen über langjährige Erfahrung als mittelständische Unternehmer. Dies bildet zusammen mit der internationalen Marktorientierung, dem branchenübergreifenden Technologie Know-how und den inhouse verfügbaren Produktionsanlagen die Basis für den weiteren Standortausbau im 8. Jahr des Unternehmens.
Resumo:
Gegenstand des vorliegenden Beitrages ist eine Methode zur Kosten- und Leistungsbewertung von Containerschiffen als Transportmittel des Hauptlaufes in intermodalen Transportketten für ISO-Container. Anlass bildet die permanente Größenentwicklung der Containerschiffe und die daraufhin ausgerichtete Infrastruktur- und Transportkettenentwicklung im Vor- und Nachlauf, die nicht risikofrei zu beurteilen ist. Mit der vorgestellten Methode wird deutlich, dass die Erfolgs- bzw. Misserfolgsfaktoren der Großcontainerschiffe fast nur noch in den Häfen und deren Hinterlandanbindungen zu suchen sind.
Resumo:
Es werden Auslegungsverfahren für vertikale und horizontale bis leicht geneigte Hochleistungs-Schneckenförderer vorgestellt, die eine anwendbare und praxistaugliche Möglichkeit sind, solche Fördergeräte für den täglichen Einsatz im Massengutumschlag auszulegen. Die Verifikation des Auslegungsverfahrens für vertikale Schneckenförderer durch Leistungsmessungen an zwei Referenzanlagen hat gezeigt, dass sich die im industriellen Einsatz befindlichen Anlagen mit guten Ergebnissen durch das Berechnungsverfahren nachrechnen lassen.
Resumo:
Das Ziel des Projektes SEMT ist die Unterstützung der qualitätsrelevanten Gewinnung durch Erkennung der Materialarten und der dazwischen liegenden Trennfläche (Schichtgrenze) während des Grabvorganges als Geräteführerhilfe und zur Verfeinerung zukünftiger Tagebaumodelle. Die in Echtzeit erfolgende Erkennung des anstehenden Materials, der Trennflächen und die während des Grabvorgangs erfolgende Vorauserkundung in die Tiefe bilden die Basis für weitere Automatisierungsvorhaben und Prozessoptimierungen in der gesamten Abbaukette von Gewinnung, Transport, Lagerung und Verkippung. Zur Auswahl einer geeigneten Sensorik wurde eine Vorstudie mit anschließender Wertung in Bezug auf die Leistungsanforderungen und Einsatzbedingungen am Schaufelradbagger durchgeführt. Die aus dieser Studie als theoretisch geeignet erscheinenden Sensoriken Georadar und Geoelektrik mussten in Feldversuchen ihre praktische Eignung für SEMT nachweisen. Dieser Bericht gibt eine Übersicht über die durchgeführten Feldversuche mit den dazugehörigen Ergebnissen und einen Ausblick auf die mögliche Integration der Sensoriken am Schaufelradbagger.
Resumo:
Ein dynamisches Umfeld erforderte die permanente Anpassung (intra-)logistischer Prozesse zur Aufrechterhaltung der Leistungs- und Wettbewerbsfähigkeit von Unternehmen. In der Standardisierung von Prozessen und in unternehmensübergreifenden Prozessmodellen wurden Schlüsselfaktoren für ein effizientes Geschäftsprozessmanagement gesehen, insbesondere in Netzwerken. In der Praxis fehlten wissenschaftlich fundierte und detaillierte Referenzprozessmodelle für die (Intra-)Logistik. Mit der Erforschung und Entwicklung eines Referenzprozessmodells und der prototypischen Realisierung einer Prozess-Workbench zur generischen Erstellung wandelbarer Prozessketten wurde ein Beitrag zur Prozessstandardisierung in der Logistik geleistet. Im Folgenden wird der beschrittene Lösungsweg dargestellt, der erstens aus der Entwicklung eines Metamodells für die Referenzmodellierung, zweitens aus dem empirischen Nachweis der Generierung eines Referenzprozessmodells aus „atomaren“ Elementen und drittens aus der Modellevaluation bestand.
Resumo:
Die Sortierung von Stückgütern stellt einen der aufwendigsten Vorgänge in der Warenverteilung dar, der heutzutage weitestgehend maschinell durch hochautomatisierte, kettengeführte Sortieranlagen erledigt wird. Von besonderem Interesse ist die Ausführung des Antriebssystems, da dessen Eigenschaften maßgeblich die Effizienz der Gesamtanlage festlegen. Berührungslos arbeitende Linearinduktionsantriebe stellen hierfür den aktuellen Stand der Technik dar. Ihr signifikanter Nachteil ist der äußerst geringe Wirkungsgrad von höchstens 25%. Angesichts steigender Energiepreise wird dieser Nachteil in absehbarer Zeit stärker ins Gewicht fallen. Es müssen Möglichkeiten zur Wirkungsgradsteigerung untersucht werden oder aber ein alternatives, vergleichbares Antriebskonzept gefunden werden. Der Kettenvortrieb durch Reibradantriebe stellt ein solches Konzept dar. Dieser Beitrag behandelt Antriebssysteme von kettengeführten Stückgutsortieranlagen und stellt zunächst bewährte Systeme wie Kettenrad-, Schleppketten- und Schneckenwellenantrieb vor. Hieran schließt sich eine Diskussion der Eigenschaften von aktuell eingesetzten Linearinduktionsantrieben an. Bezüglich der Wirkungsgradproblematik werden Optimierungsmöglichkeiten aufgezeigt und der Reibradantrieb als weiteres mögliches Antriebskonzept vorgestellt.
Resumo:
Eine Analyse der Kundenauftragsprozesse in der Automobilindustrie zeigt, dass trotz großer An-strengungen nach wie vor Schwierigkeiten bei der Stabilisierung der komplexen Produktions- und Logistikprozesse mit negativen Auswirkungen auf die Zielgröße Termintreue auftreten. Innerhalb des mehrstufigen Wertschöpfungsnetzwerks wird dieser Planungs¬unsicherheit durch kurzfristige Bedarfs-schwankungen mit großen Sicherheits¬beständen und der Forderung nach hochflexiblen Logistik- und Produktionsprozessen bei den Zulieferern begegnet. In diesem Beitrag werden neue Methoden und Konzepte zur Planung und Umsetzung der Produktionssteuerung nach stabiler Auftragsfolge in der Automobilindustrie vorgestellt. Ziel ist es, den Produktionsprozess hinreichend stabilisieren zu können, sodass erhebliches Rationalisierungspotential sowohl bei den internen Prozessen als auch im gesamten Zuliefernetzwerk erreicht wird.
Resumo:
Nicht nur in der Medizintechnik, in der Luftfahrt und in der Automobilindustrie werden die generativen Verfahren zunehmend mehr als wichtige Produktionsverfahren angesehen. Auch die (Bau-) Industrie nimmt mehr und mehr die Möglichkeiten und Chancen wahr, welche diese Verfahren für andersartige Konstruktionen und Details eröffnen. Die Ergründung von Veränderungen und Auswirkungen dieser neuen Technologien auf den Entwurf und auf die Umsetzung von Architektur und Baukonstruktion ist Schwerpunkt der Forschungstätigkeiten von Dipl.-Ing. Holger Strauß an den Hochschulstandorten TU Delft, Niederlande und an der Hochschule Ostwestfalen-Lippe in Detmold. Das erste, umfangreiche Forschungsprojekt zu diesem Thema - „Influence of Additive Processes on the development of facade constructions“ - wurde 2008 in Kooperation mit der international agierenden Firma Kawneer-Alcoa im Forschungsschwerpunkt „ConstructionLab“ an der Detmolder Schule für Architektur und Innenarchitektur etabliert. Der Fokus der Bestrebungen liegt zunächst auf der Ergründung von Möglichkeiten für die generative Herstellung von Bauteilen als Ergänzung der Standardprodukte in Systemfassaden. Die Verwendung der Additiven Verfahren und Hightech CAD-CAM Anwendungen bedingt eine neue Art des Konstruierens. Nämlich nicht mehr das fertigungsgerechte, sondern das funktionsgerechte – das „Funktionale Konstruieren“. Neben der Bereicherung der Forschung und Lehre an den Hochschulen durch eine praxisnahe und zielorientierte Aufgabenstellung, fließen alle Ergebnisse in die Promotion von Holger Strauß an der Technischen Universität in Delft am Lehrstuhl Design of Construction bei Prof. Dr.-Ing. Ulrich Knaack ein.
Resumo:
Die Planung von Erdbaumaßnahmen stellt eine komplexe Aufgabe dar. Der Einsatz unterschiedlicher Maschinenkonfigurationen sowie alternativer Szenarien im Baustellenlayout (z.B. bezüglich der Transportrouten oder Zwischenlager) ist durchgängig zu prüfen und auszulegen. Falsche Entscheidungen können zu Verzögerungen oder einer unwirtschaftlichen Lösung führen und somit Projektdauer und -kosten beeinträchtigen. In der Praxis beruht dieser Planungsprozess auf dem Erfahrungswissen der Verantwortlichen, Tools zur Entscheidungsunterstützung in der Einsatzplanung von Aushub- und Transportgeräten werden entgegen der zentralen Bedeutung aber bislang nicht genutzt. Deshalb wurde im Rahmen des Forschungsverbundes „ForBAU – Virtuelle Baustelle“1 ein Lösungsweg erarbeitet, mit dem die Planung der Baustellenabläufe im Erdbau durch die Anwendung der ereignisorientierten Ablaufsimulation unterstützt werden kann. Hierzu wurden die Verfahren der Leistungsberechnung von Erdbaugeräten um statistische Komponenten ergänzt, für eine Anwendung in der Simulation adaptiert und in eine Bausteinbibliothek implementiert. Die Ermittlung der Transportzeiten basiert in der vorgestellten Lösung auf einem eigens entwickelten Algorithmus zur kinematischen Simulation der Fahrzeiten, welcher die Beschleunigungs- und Bremsvorgänge eines Fahrzeugs auf der Wegstrecke unter Berücksichtigung der Beladung nachbildet. Dipl.-Ing. Johannes Wimmer, Prof. Dr.-Ing. Dipl.-Wi.-Ing. Willibald A. Günthner
Resumo:
Für die Optimierung und somit Energieeinsparung beim Trocknen von Grüngut wurde eine mechanische Vorentwässerung entwickelt. Dieser Schritt wurde notwendig, da sich die politischen und ökonomischen Rahmenbedingungen, durch Subventionskürzungen und steigenden Energiepreisen, zu Ungunsten der Trocknungsbetriebe verändert haben und eine rein thermische Trocknung kaum noch rentabel ist. In einem gemeinsamen Kooperationsprojekt zwischen der TU Chemnitz und der fömat GmbH entstand eine Schneckenpresse speziell für Grüngut ohne dabei wichtige Nährstoffe beim Entwässern mit auszuspülen. Seit 2010 ist diese Fördereinrichtung in den Trocknungsprozess vollständig integriert und es konnten während einer vollständigen Trocknungssaison in ca. 1.800 Betriebsstunden mehr als 10.500 m³ Wasser aus 47.200 t Grüngut abpressen werden. Dies hatte zur Folge, dass eine Energieeinsparung von über 25 % erreicht wird. Die Qualität des Grünfutters wurde dabei nicht beeinträchtigt und die wichtigen Nährstoffe blieben im Grüngut nahezu vollständig erhalten.