13 resultados para De Witt, Corneille
em Digital Peer Publishing
Resumo:
Zur schnellen Herstellung von Metallteilen eignen sich die schichtweise Rapid Prototyping Verfahren. Zum einen ist die direkte Herstellung aus Zweikomponenten-Metallpulver möglich, zum anderen lassen sich aus Kunststoffüberzogenen Metallpulvern durch Infiltration komplexe Metallteile fertigen. Der Vortrag beschreibt die Prozessketten der beiden Verfahren und stellt ihre besonderen Eigenschaften gegenüber. Anhand von Praxisbeispielen wird die tatsächliche Leistungsfähigkeit beider Verfahren aufgeführt. Es werden die beiden Verfahren “Direct Metal Laser Sintering“ (DMLS) und “Indirect Metal Laser Sintering“ (IMLS) zur Herstellung von Gesenken und Bauteilen vorgestellt. Das “Direct Metal Laser Sintering“ wird in Zusammenarbeit mit der Fa. Daimler-Chrysler vorgestellt, die mit ihrer EOS Sinteranlage ein Benchmarkwerkzeug mit konturnaher Kühlung gefertigt haben. Das “Indirect Metal Laser Sintering“ wird an der Universität Duisburg-Essen angewandt. Hier wurden diverse Bauteile bzw. Gesenke in Zusammenarbeit mit der Fa. Powercut oder dem ZBT hergestellt.
Resumo:
Das Lasersintern (LS) hat sich als generatives Verfahren zur schichtweisen Fertigung von Modellen und Prototypen aus CAD-Daten etabliert. Die Möglichkeit werkzeuglos beliebig komplexe Bauteile zu erstellen birgt großes Potential für die zukünftige Fertigung von Einzelstücken und Kleinserien. Da die verfügbare Technologie starke Schwankung der Qualität mit sich bringt, stellt sich jedoch die Frage nach der prinzipiellen Leistungsfähigkeit des Verfahrens. Die Professur Fertigungstechnik an der Universität Duisburg-Essen verfügt über eine Sinterstation 2000 und hat sich näher mit dieser Problematik befasst um zu untersuchen, welche Qualität bei gegebener Anlagentechnik unter Verwendung eines gängigen Lasersinter-Werkstoffes erreichbar ist.
Resumo:
Der Anwendungsbereich für Modelle und Prototypen hat sich mittlerweile auch auf unterschiedlichste medizinische Fragestellungen ausgedehnt. Der vorliegende Beitrag zeigt an verschiedenen Praxisbeispielen und Verfahren Möglichkeiten eines in der Technik etablierten Verfahrens für eine erweiterte Anwendung auf.
Resumo:
Kundenorientierte Optimierung generativer Herstellungsprozesse
Resumo:
Die Strahlschmelztechnologie entwickelt sich in vielen Anwendungsbereichen zu einer echten Alternative zu den konventionellen Fertigungsverfahren. Dieser Trend wird gerade durch die Verarbeitung von serienidentischen, einkomponentigen Pulvern zur Herstellung metallischer Bauteile verstärkt, wodurch sich wiederum neue Entwicklungs- und Einsatzpotentiale ergeben. Allerdings weisen die Strahlschmelzbauteile keine vollkommen übereinstimmenden Werkstoffkennwerte im Vergleich zu herkömmlich hergestellten Bauteilen auf, wodurch die Akzeptanz durch Industrie und Forschung eingeschränkt wird. Eine exakte Beschreibung (Nachweis) der Materialeigenschaften von strahlgeschmolzenen Bauteilen wird in dem Maße wichtiger, mit dem diese Verfahren zur Fertigung von Endprodukten herangezogen werden. Weiterhin spielt die Anisotropie des Gefüges strahlgeschmolzener Bauteile eine große Rolle. Aus diesem Grund wurden im RTC Duisburg umfangreiche Festigkeitsuntersuchungen (statisch und dynamisch) in Abhängigkeit von der Baulage, des Oberflächenzustandes und verschiedener Belichtungsstrategien durchgeführt. In diesem Vortrag werden ausgewählte Ergebnisse zu den Untersuchungen vorgestellt.
Resumo:
Die Scanstrategie beim LS vom Kunststoff hat einen maßgeblichen Einfluss auf den Energieeintrag in das Pulverbett und somit auf die mechanischen und optischen Eigenschaften des Bauteils. Daher bieten manche Systeme die Möglichkeit verschiedener Scanstrategien oder Scanoptionen, die je nach Anwendung und gewünschten Eigenschaften ausgewählt werden können. In diesem Artikel werden die grundlegenden Aspekte der Scanstrategie beim Laser Sintern vom Kunststoff, sowie die Double-Belichtungsfunktion aufgegriffen, mit dem Ziel den genauen Einfluss der Scanstrategie bzw. Scanoptionen auf die mechanischen Eigenschaften von Thermoplasten zu ermitteln.
Resumo:
Technische Produktionssysteme und Prozesse - welcher Technologie auch immer - müssen den Bedürfnissen der industriellen Bauteilherstellung für Endanwendungen im Automobilbau entsprechen. Es stellt sich zunächst die Frage, auf welchem technologischen Reifegrad sich die generativen Technologien für den Automobilbau derzeit befinden? Welche außerordentlichen Vorteile können generative Prozessketten gegenüber konventionellen Herstellungsverfahren bieten und welche Hürden müssen genommen werden? Im Vordergrund der Untersuchung steht die Betrachtung von Pre-, In- und Post-Prozessen generativer wie auch konventioneller Produktionsverfahren. Bei der Gegenüberstellung der Prozessketten werden Maßstäbe angesetzt, die derzeit bei der Bauteilherstellung im Automobilbau Gültigkeit haben und auf Kriterien wie Effizienz, Reproduzierbarkeit und Kontrollierbarkeit aufbauen. Schließlich findet eine Einschätzung aus der Perspektive der Technologieintegration in derzeitige Produktionssysteme und Lieferketten statt. Es werden Restriktionen und Handlungsfelder von generativen Prozessen deutlich, die für den Einsatz für Endkunden-Bauteile im Fahrzeugbau behandelt werden müssen.
Resumo:
Ephemere Festausstattungen spielten in der höfischen Selbstdarstellung des französischen Sonnenkönigs eine wichtige Rolle, erlaubten sie doch anlassgebunden die kurzfristige Entfaltung höchsten Prunks. Dabei wurden bewusst die immanenten Aspekte der vergänglichen Fest- und Bühnenkunst, eben ihre ephemere Natur und Wandlungsfähigkeit – ästhetisch und inhaltlich als Mittel der Repräsentation königlicher Macht genutzt. Auf der Bühne und innerhalb des Festablaufs waren die vergänglichen Architekturen und Dekorationen in eine unablässige Folge ostentativer changements eingebunden. Die Inszenierung der diversen machines suggerierten Publikum und Teilnehmern der Veranstaltungen, der scheinbar selbstständigen Bewegung und Metamorphose unbelebter Materie als Ausdruck königlicher Macht beizuwohnen. Die Bedeutung, die der kinetischen und transitorischen Festausstattung beigemessen wurde, schlug sich nicht nur in der zeitgenössischen Traktatliteratur nieder, sondern auch in den sprachlichen und bildlichen Interpretationen der flüchtigen Spektakel, die ihnen Dauer verleihen sollten.
Resumo:
Beim Laser-Sintern wird das Pulverbett durch Heizstrahler vorgeheizt, um an der Pulveroberfläche eine Temperatur knapp unterhalb des Materialschmelzpunktes zu erzielen. Dabei soll die Temperaturverteilung auf der Oberfläche möglichst homogen sein, um gleiche Bauteileigenschaften im gesamten Bauraum zu erzielen und den Bauteilverzug gering zu halten. Erfahrungen zeigen jedoch sehr inhomogene Temperaturverteilungen, weshalb oftmals die Integration von neuen oder optimierten Prozessüberwachungssystemen in die Anlagen gefordert wird. Ein potentiell einsetzbares System sind Thermographiekameras, welche die flächige Aufnahme von Oberflächentemperaturen und somit Aussagen über die Temperaturen an der Pulverbettoberfläche erlauben. Dadurch lassen sich kalte Bereiche auf der Oberfläche identifizieren und bei der Prozessvorbereitung berücksichtigen. Gleichzeitig ermöglicht die Thermografie eine Beobachtung der Temperaturen beim Lasereingriff und somit das Ableiten von Zusammenhängen zwischen Prozessparametern und Schmelzetemperaturen. Im Rahmen der durchgeführten Untersuchungen wurde ein IR-Kamerasystem erfolgreich als Festeinbau in eine Laser-Sinteranlage integriert und Lösungen für die hierbei auftretenden Probleme erarbeitet. Anschließend wurden Untersuchungen zur Temperaturverteilung auf der Pulverbettoberfläche sowie zu den Einflussfaktoren auf deren Homogenität durchgeführt. In weiteren Untersuchungen wurden die Schmelzetemperaturen in Abhängigkeit verschiedener Prozessparameter ermittelt. Auf Basis dieser Messergebnisse wurden Aussagen über erforderliche Optimierungen getroffen und die Nutzbarkeit der Thermografie beim Laser-Sintern zur Prozessüberwachung, -regelung sowie zur Anlagenwartung als erster Zwischenstand der Untersuchungen bewertet.
Resumo:
Generative Fertigungsverfahren haben sich in den letzten Jahren als effektive Werkzeuge für die schnelle Entwicklung von Produkten nahezu beliebiger Komplexität entwickelt. Gleichzeitig wird gefordert, die Reproduzierbarkeit der Bauteile und auch seriennahe bzw. seriengleiche Eigenschaften zu gewährleisten. Die Vielfalt und der Umfang der Anwendungen sowie die große Anzahl verschiedener generativer Fertigungsverfahren verlangen adäquate Qualitätsüberwachungs- und Qualitätskontrollsysteme. Ein Lösungsansatz für die Qualitätsbewertung von generativen Fertigungsverfahren besteht in der Einführung eines Kennzahlensystems. Hierzu müssen zunächst Anforderungsprofile und Qualitätsmerkmale für generativ hergestellte Bauteile definiert werden, welche durch Prüfkörpergeometrien abgebildet und mit Hilfe von Einzelkennzahlen klassifiziert werden. In Rahmen der durchgeführten Untersuchungen wurde die Qualitätsbewertung anhand von Prüfkörpergeometrien am Beispiel des Laser-Sinterprozesses qualifiziert. Durch Beeinflussung der Prozessparameter, d.h. der gezielten Einbringung von Störgrößen, welche einzeln oder in Kombination zu unzulässigen Qualitätsschwankungen führen können, ist es möglich, die Qualität des Produktes zu beurteilen. Die Definition von Einzelkennzahlen, die eine Steuerung und Kontrolle sowie eine Vorhersage potentieller Fehler ermöglicht, bietet hierbei essentielle Möglichkeiten zur Qualitätsbewertung. Eine Zusammenführung zu einem gesamtheitlichen Kennzahlensystem soll zum einen den Prozess auf Grundlage der definierten Anforderungsprofile bewerten und zum anderen einen direkten Zusammenhang der ausgewählten Störgrößen und Prozessgrößen herleiten, um vorab eine Aussage über die Bauteilqualität treffen zu können.
Resumo:
Ein auf Basis von Prozessdaten kalibriertes Viskositätsmodell wird vorgeschlagen und zur Vorhersage der Viskosität einer Polyamid 12 (PA12) Kunststoffschmelze als Funktion von Zeit, Temperatur und Schergeschwindigkeit angewandt. Im ersten Schritt wurde das Viskositätsmodell aus experimentellen Daten abgeleitet. Es beruht hauptsächlich auf dem drei-parametrigen Ansatz von Carreau, wobei zwei zusätzliche Verschiebungsfaktoren eingesetzt werden. Die Temperaturabhängigkeit der Viskosität wird mithilfe des Verschiebungsfaktors aT von Arrhenius berücksichtigt. Ein weiterer Verschiebungsfaktor aSC (Structural Change) wird eingeführt, der die Strukturänderung von PA12 als Folge der Prozessbedingungen beim Lasersintern beschreibt. Beobachtet wurde die Strukturänderung in Form einer signifikanten Viskositätserhöhung. Es wurde geschlussfolgert, dass diese Viskositätserhöhung auf einen Molmassenaufbau zurückzuführen ist und als Nachkondensation verstanden werden kann. Abhängig von den Zeit- und Temperaturbedingungen wurde festgestellt, dass die Viskosität als Folge des Molmassenaufbaus exponentiell gegen eine irreversible Grenze strebt. Die Geschwindigkeit dieser Nachkondensation ist zeit- und temperaturabhängig. Es wird angenommen, dass die Pulverbetttemperatur einen Molmassenaufbau verursacht und es damit zur Kettenverlängerung kommt. Dieser fortschreitende Prozess der zunehmenden Kettenlängen setzt molekulare Beweglichkeit herab und unterbindet die weitere Nachkondensation. Der Verschiebungsfaktor aSC drückt diese physikalisch-chemische Modellvorstellung aus und beinhaltet zwei zusätzliche Parameter. Der Parameter aSC,UL entspricht der oberen Viskositätsgrenze, wohingegen k0 die Strukturänderungsrate angibt. Es wurde weiterhin festgestellt, dass es folglich nützlich ist zwischen einer Fließaktivierungsenergie und einer Strukturänderungsaktivierungsenergie für die Berechnung von aT und aSC zu unterscheiden. Die Optimierung der Modellparameter erfolgte mithilfe eines genetischen Algorithmus. Zwischen berechneten und gemessenen Viskositäten wurde eine gute Übereinstimmung gefunden, so dass das Viskositätsmodell in der Lage ist die Viskosität einer PA12 Kunststoffschmelze als Folge eines kombinierten Lasersinter Zeit- und Temperatureinflusses vorherzusagen. Das Modell wurde im zweiten Schritt angewandt, um die Viskosität während des Lasersinter-Prozesses in Abhängigkeit von der Energiedichte zu berechnen. Hierzu wurden Prozessdaten, wie Schmelzetemperatur und Belichtungszeit benutzt, die mithilfe einer High-Speed Thermografiekamera on-line gemessen wurden. Abschließend wurde der Einfluss der Strukturänderung auf das Viskositätsniveau im Prozess aufgezeigt.
Resumo:
Das Laser-Sintern hat sich in den letzten Jahren zunehmend als Kleinserienfertigungsverfahren für Kunststoffbauteile etabliert. Dennoch entspricht die Bauteilqualität aufgrund von Verzug oder mangelnder Reproduzierbarkeit der Eigenschaften oftmals nicht den Anforderungen. Ein Grund hierfür ist die inhomogene Temperaturführung während des Prozesses. So ergeben sich aufgrund einer inhomogenen Temperaturverteilung auf der Pulverbettoberfläche sowie durch unterschiedliche Abkühlgeschwindigkeiten im Pulverbett zum Teil deutliche lokale Unterschiede im Temperatur-Zeit-Verhalten. Grundlegende Untersuchungen zu diesen Effekten fehlen jedoch bislang. Im Rahmen der dargestellten Untersuchungen gilt es daher zum einen die Reproduzierbarkeit verschiedener Laser-Sinter-Anlagen in Bezug auf die mechanischen Eigenschaften, die Maßhaltigkeit und die Bauteildichte zu analysieren und zum anderen diese Ergebnisse mit den lokalen Temperatur- und Abkühlbedingungen im Pulverbett zu korrelieren. Dabei werden durch thermografische Untersuchungen die Temperaturverteilung an der Pulverbett-oberfläche charakterisiert sowie durch Einsatz entsprechender Funk-Temperatur-messsensorik die lokalen Abkühlbedingungen von Bauteilen innerhalb des Pulverbettes analysiert. Diese lokalen Temperatur- und Abkühlbedingungen sollen anschließend mit positionsabhängigen Analysen zum Bauteilschrumpf korreliert werden. Abschließend werden Optimierungspotentiale für ein neuentwickeltes Temperaturführungssystem mit homogeneren Temperatur- und Abkühlbedingungen abgeleitet.