5 resultados para 5-DOF haptic interaction

em Digital Peer Publishing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article deals with embodied user interfaces for handheld augmented reality games, which consist of both physical and virtual components. We have developed a number of spatial interaction techniques that optically capture the device's movement and orientation relative to a visual marker. Such physical interactions in 3-D space enable manipulative control of mobile games. In addition to acting as a physical controller that recognizes multiple game-dependent gestures, the mobile device augments the camera view with graphical overlays. We describe three game prototypes that use ubiquitous product packaging and other passive media as backgrounds for handheld augmentation. The prototypes can be realized on widely available off-the-shelf hardware and require only minimal setup and infrastructure support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grasping of virtual objects has been an active research field for several years. Solutions providing realistic grasping rely on special hardware or require time-consuming parameterizations. Therefore, we introduce a flexible grasping algorithm enabling grasping without computational complex physics. Objects can be grasped and manipulated with multiple fingers. In addition, multiple objects can be manipulated simultaneously with our approach. Through the usage of contact sensors the technique is easily configurable and versatile enough to be used in different scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of the auditory modality in virtual reality environments is known to promote the sensations of immersion and presence. However it is also known from psychophysics studies that auditory-visual interaction obey to complex rules and that multisensory conflicts may disrupt the adhesion of the participant to the presented virtual scene. It is thus important to measure the accuracy of the auditory spatial cues reproduced by the auditory display and their consistency with the spatial visual cues. This study evaluates auditory localization performances under various unimodal and auditory-visual bimodal conditions in a virtual reality (VR) setup using a stereoscopic display and binaural reproduction over headphones in static conditions. The auditory localization performances observed in the present study are in line with those reported in real conditions, suggesting that VR gives rise to consistent auditory and visual spatial cues. These results validate the use of VR for future psychophysics experiments with auditory and visual stimuli. They also emphasize the importance of a spatially accurate auditory and visual rendering for VR setups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, stable markerless 6 DOF video based handtracking devices became available. These devices simultaneously track the positions and orientations of both user hands in different postures with at least 25 frames per second. Such hand-tracking allows for using the human hands as natural input devices. However, the absence of physical buttons for performing click actions and state changes poses severe challenges in designing an efficient and easy to use 3D interface on top of such a device. In particular, for coupling and decoupling a virtual object’s movements to the user’s hand (i.e. grabbing and releasing) a solution has to be found. In this paper, we introduce a novel technique for efficient two-handed grabbing and releasing objects and intuitively manipulating them in the virtual space. This technique is integrated in a novel 3D interface for virtual manipulations. A user experiment shows the superior applicability of this new technique. Last but not least, we describe how this technique can be exploited in practice to improve interaction by integrating it with RTT DeltaGen, a professional CAD/CAS visualization and editing tool.