5 resultados para Annular-ring Ebg

em Digital Knowledge Repository of Central Drug Research Institute


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regioselective synthesis of unsymmetrical biaryls with electron withdrawing or donating substituents is described and illustrated by carbanion-induced ring transfonnation of 6-aryl-a-pyrones with methoxyacetone in excellent yield. Our methodology is an alternative to classical organometal-catalyzed aryl-aryl coupling reactions and can be applied to the synthesis of functionally demanding naphthyl biaryls for the development of new ligands for asymetric synthesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expeditious synthesis of several 2-amino-isophthalonitriles and their biaryl compounds is described and illustrated by carbanion-induced ring transformation of functionalized 2H-pyran-2-ones with malononitrile in excellent yields. The strength of the reaction lies in the creation of an aromatic ring at room temperature from six membered-lactones under mild reaction conditions. This approach is an alternative to Diels-Alder reactions of 2H-pyran-2-ones with dienophiles, which require forcing thermal conditions to obtain benzene derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel DBU-promoted ring transformation of substituted isoxazoles to substituted pyrroles is described

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tributyltin hydride-mediated straightforward synthesis of a new isoxazolo-benzazulene system from the derivatives afforded by the Baylis-Hillman reaction of 3-(2-bromophenyl)-4-isoxazolecarbaldehydes is described

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expeditious synthesis of highly substituted benzenes with electron withdrawing or donating substituents is described and illustrated by carbanion-induced ring transformation of 2H-pyran-2-one with malononitrile in excellent yield. The novelty of the reaction lies in the creation of an aromatic ring at room temperature from six membered-lactones under mild reaction conditions.