3 resultados para staple length

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiments observe and measure the length of the annular regime in fully condensing quasi-steady (steady-in-the-mean) flows of pure FC-72 vapor in a horizontal condenser (rectangular cross-section of 2 mm height, 15 mm width, and 1 m length). The sides and top of the duct are made of clear plastic that allows flow visualization. The experimental system in which this condenser is used is able to control and achieve different quasi-steady mass flow rates, inlet pressures, and wall cooling conditions (by adjustment of the temperature and flow rate of the cooling water flowing underneath the condensing-plate). The reported correlations and measurements for the annular length are also vital information for determining the length of the annular regime and proposing extended correlation (covering many vapors and a larger parameter set than the experimentally reported version here) by ongoing independent modeling and computational simulation approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agroforestry parklands represent a vast majority of the agricultural landscape under subsistent-oriented farming in semi-arid West Africa. Parklands are characterized by the growth of well- maintained trees (e.g., shea) on cultivated fields as a result of both environmental and human influences. Shea (Vitellaria paradoxa) provides a cultural and economic benefit to the local people of Ghana, especially women. Periods between traditional fallow rotation systems have reduced recently due to agricultural development and a demand for higher production. As a result, shea trees, which regenerate during fallow periods, has decreased over the landscape. The aim of this study was to determine beneficial spatial distributions of V. paradoxa to maintain high yields of staple crops, and how management of V. paradoxa will differ between male and female farmers as a result of farmer based needs and use of shea. Vegetation growth and grain yield of maize (Zea mays) associated with individual trees, clumped trees, and open fields were measured. Soil moisture and light availability were also measured to determine how V. paradoxa affected resource availability of maize in either clumped or scattered distributions of V. paradoxa. As expected, light availability increased as measurement locations moved farther away from all trees. However, soil moisture was actually greater under trees in clumps than under individual trees. Maize stalk height and cob length showed no difference between clumped and single trees at each measurement location. Grain yield per plot and per cob increased as measurement locations moved farther from single trees, but was actually greater near clumped trees that in the open field subplots. Cob length and maize stalk height increased with greater light availability, but grain yield per cob or per plot showed no relationship with light, but were not affected by soil moisture. Conversely, grain yield increased with increasing soil moisture, but had no relationship with light availability. Initial farming capital is the largest constraint to female farmers; therefore the collection of shea can help provide women with added income that could meet their specific farming needs. Our data indicate that overall effects of maintaining clumped distributions of V. paradoxa provided beneficial microclimates for staple crops when compared to single trees. It is recommended that male and female farmers allow shea to grow in clumped spatial distributions rather than maintaining scattered, individual trees.