8 resultados para polarization beam splitter
em Digital Commons - Michigan Tech
Resumo:
The degree of polarization of a refected field from active laser illumination can be used for object identifcation and classifcation. The goal of this study is to investigate methods for estimating the degree of polarization for refected fields with active laser illumination, which involves the measurement and processing of two orthogonal field components (complex amplitudes), two orthogonal intensity components, and the total field intensity. We propose to replace interferometric optical apparatuses with a computational approach for estimating the degree of polarization from two orthogonal intensity data and total intensity data. Cramer-Rao bounds for each of the three sensing modalities with various noise models are computed. Algebraic estimators and maximum-likelihood (ML) estimators are proposed. Active-set algorithm and expectation-maximization (EM) algorithm are used to compute ML estimates. The performances of the estimators are compared with each other and with their corresponding Cramer-Rao bounds. Estimators for four-channel polarimeter (intensity interferometer) sensing have a better performance than orthogonal intensities estimators and total intensity estimators. Processing the four intensities data from polarimeter, however, requires complicated optical devices, alignment, and four CCD detectors. It only requires one or two detectors and a computer to process orthogonal intensities data and total intensity data, and the bounds and estimator performances demonstrate that reasonable estimates may still be obtained from orthogonal intensities or total intensity data. Computational sensing is a promising way to estimate the degree of polarization.
Resumo:
The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.
Resumo:
The report reviews the technology of Free-space Optical Communication (FSO) and simulation methods for testing the performance of diverged beam in the technology. In addition to the introduction, the theory of turbulence and its effect over laser is also reviewed. In the simulation revision chapter, on-off keying (OOK) and diverged beam is assumed in the transmitter, and in the receiver, avalanche photodiode (APD) is utilized to convert the photon stream into electron stream. Phase screens are adopted to simulate the effect of turbulence over the phase of the optical beam. Apart from this, the method of data processing is introduced and retrospected. In the summary chapter, there is a general explanation of different beam divergence and their performance.
Resumo:
Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.
Resumo:
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Resumo:
This thesis represents the overview of hydrographic surveying and different types of modern and traditional surveying equipment, and data acquisition using the traditional single beam sonar system and a modern fully autonomous underwater vehicle, IVER3. During the thesis, the data sets were collected using the vehicles of the Great Lake Research Center at Michigan Technological University. This thesis also presents how to process and edit the bathymetric data on SonarWiz5. Moreover, the three dimensional models were created after importing the data sets in the same coordinate system. In these interpolated surfaces, the details and excavations can be easily seen on the surface models. In this study, the profiles are plotted on the surface models to compare the sensors and details on the seabed. It is shown that single beam sonar might miss some details, such as pipeline and quick elevation changes on the seabed when we compare to the side scan sonar of IVER3 because the single side scan sonar can acquire better resolution. However, sometimes using single beam sonar can save your project time and money because the single beam sonar is cheaper than side scan sonars and the processing might be easier than the side scan data.
Resumo:
This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity Pb(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations ±cos2(θ12) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130±5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell’s inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-air experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.