3 resultados para experimental intensity parameter
em Digital Commons - Michigan Tech
Resumo:
The experiments observe and measure the length of the annular regime in fully condensing quasi-steady (steady-in-the-mean) flows of pure FC-72 vapor in a horizontal condenser (rectangular cross-section of 2 mm height, 15 mm width, and 1 m length). The sides and top of the duct are made of clear plastic that allows flow visualization. The experimental system in which this condenser is used is able to control and achieve different quasi-steady mass flow rates, inlet pressures, and wall cooling conditions (by adjustment of the temperature and flow rate of the cooling water flowing underneath the condensing-plate). The reported correlations and measurements for the annular length are also vital information for determining the length of the annular regime and proposing extended correlation (covering many vapors and a larger parameter set than the experimentally reported version here) by ongoing independent modeling and computational simulation approach.
Resumo:
The purpose of this research was to develop a working physical model of the focused plenoptic camera and develop software that can process the measured image intensity, reconstruct this into a full resolution image, and to develop a depth map from its corresponding rendered image. The plenoptic camera is a specialized imaging system designed to acquire spatial, angular, and depth information in a single intensity measurement. This camera can also computationally refocus an image by adjusting the patch size used to reconstruct the image. The published methods have been vague and conflicting, so the motivation behind this research is to decipher the work that has been done in order to develop a working proof-of-concept model. This thesis outlines the theory behind the plenoptic camera operation and shows how the measured intensity from the image sensor can be turned into a full resolution rendered image with its corresponding depth map. The depth map can be created by a cross-correlation of adjacent sub-images created by the microlenslet array (MLA.) The full resolution image reconstruction can be done by taking a patch from each MLA sub-image and piecing them together like a puzzle. The patch size determines what object plane will be in-focus. This thesis also goes through a very rigorous explanation of the design constraints involved with building a plenoptic camera. Plenoptic camera data from Adobe © was used to help with the development of the algorithms written to create a rendered image and its depth map. Finally, using the algorithms developed from these tests and the knowledge for developing the plenoptic camera, a working experimental system was built, which successfully generated a rendered image and its corresponding depth map.
Resumo:
The selective catalytic reduction system is a well established technology for NOx emissions control in diesel engines. A one dimensional, single channel selective catalytic reduction (SCR) model was previously developed using Oak Ridge National Laboratory (ORNL) generated reactor data for an iron-zeolite catalyst system. Calibration of this model to fit the experimental reactor data collected at ORNL for a copper-zeolite SCR catalyst is presented. Initially a test protocol was developed in order to investigate the different phenomena responsible for the SCR system response. A SCR model with two distinct types of storage sites was used. The calibration process was started with storage capacity calculations for the catalyst sample. Then the chemical kinetics occurring at each segment of the protocol was investigated. The reactions included in this model were adsorption, desorption, standard SCR, fast SCR, slow SCR, NH3 Oxidation, NO oxidation and N2O formation. The reaction rates were identified for each temperature using a time domain optimization approach. Assuming an Arrhenius form of the reaction rates, activation energies and pre-exponential parameters were fit to the reaction rates. The results indicate that the Arrhenius form is appropriate and the reaction scheme used allows the model to fit to the experimental data and also for use in real world engine studies.