27 resultados para exhaust

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance (i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-stateengine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel consumptions in certain mission phases. Excel macrocode, Visual Basic for Application, and Excel neuron cells are combined to facilitate Excel software to perform these cycle analyses. These user-friendly programs compute and plot the data sequentially without forcing users to open other types of post-processing programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The push for improved fuel economy and reduced emissions has led to great achievements in engine performance and control. These achievements have increased the efficiency and power density of gasoline engines dramatically in the last two decades. With the added power density, thermal management of the engine has become increasingly important. Therefore it is critical to have accurate temperature and heat transfer models as well as data to validate them. With the recent adoption of the 2025 Corporate Average Fuel Economy(CAFE) standard, there has been a push to improve the thermal efficiency of internal combustion engines even further. Lean and dilute combustion regimes along with waste heat recovery systems are being explored as options for improving efficiency. In order to understand how these technologies will impact engine performance and each other, this research sought to analyze the engine from both a 1st law energy balance perspective, as well as from a 2nd law exergy analysis. This research also provided insights into the effects of various parameters on in-cylinder temperatures and heat transfer as well as provides data for validation of other models. It was found that the engine load was the dominant factor for the energy distribution, with higher loads resulting in lower coolant heat transfer and higher brake work and exhaust energy. From an exergy perspective, the exhaust system provided the best waste heat recovery potential due to its significantly higher temperatures compared to the cooling circuit. EGR and lean combustion both resulted in lower combustion chamber and exhaust temperatures; however, in most cases the increased flow rates resulted in a net increase in the energy in the exhaust. The exhaust exergy, on the other hand, was either increased or decreased depending on the location in the exhaust system and the other operating conditions. The effects of dilution from lean operation and EGR were compared using a dilution ratio, and the results showed that lean operation resulted in a larger increase in efficiency than the same amount of dilution with EGR. Finally, a method for identifying fuel spray impingement from piston surface temperature measurements was found. Note: The material contained in this section is planned for submission as part of a journal article and/or conference paper in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the introduction of the mid-level ethanol blend gasoline fuel for commercial sale, the compatibility of different off-road engines is needed. This report details the test study of using one mid-level ethanol fuel in a two stroke hand held gasoline engine used to power line trimmers. The study sponsored by E3 is to test the effectiveness of an aftermarket spark plug from E3 Spark Plug when using a mid-level ethanol blend gasoline. A 15% ethanol by volume (E15) is the test mid-level ethanol used and the 10% ethanol by volume (E10) was used as the baseline fuel. The testing comprises running the engine at different load points and throttle positions to evaluate the cylinder head temperature, exhaust temperature and engine speed. Raw gas emissions were also measured to determine the impact of the performance spark plug. The low calorific value of the E15 fuel decreased the speed of the engine along with reduction in the fuel consumption and exhaust gas temperature. The HC emissions for E15 fuel and E3 spark plug increased when compared to the base line in most of the cases and NO formation was dependent on the cylinder head temperature. The E3 spark plug had a tendency to increase the temperature of the cylinder head irrespective of fuel type while reducing engine speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their high thermal efficiency, diesel engines have excellent fuel economy and have been widely used as a power source for many vehicles. Diesel engines emit less greenhouse gases (carbon dioxide) compared with gasoline engines. However, diesel engines emit large amounts of particulate matter (PM) which can imperil human health. The best way to reduce the particulate matter is by using the Diesel Particulate Filter (DPF) system which consists of a wall-flow monolith which can trap particulates, and the DPF can be periodically regenerated to remove the collected particulates. The estimation of the PM mass accumulated in the DPF and total pressure drop across the filter are very important in order to determine when to carry out the active regeneration for the DPF. In this project, by developing a filtration model and a pressure drop model, we can estimate the PM mass and the total pressure drop, then, these two models can be linked with a regeneration model which has been developed previously to predict when to regenerate the filter. There results of this project were: 1 Reproduce a filtration model and simulate the processes of filtration. By studying the deep bed filtration and cake filtration, stages and quantity of mass accumulated in the DPF can be estimated. It was found that the filtration efficiency increases faster during the deep-bed filtration than that during the cake filtration. A “unit collector” theory was used in our filtration model which can explain the mechanism of the filtration very well. 2 Perform a parametric study on the pressure drop model for changes in engine exhaust flow rate, deposit layer thickness, and inlet temperature. It was found that there are five primary variables impacting the pressure drop in the DPF which are temperature gradient along the channel, deposit layer thickness, deposit layer permeability, wall thickness, and wall permeability. 3 Link the filtration model and the pressure drop model with the regeneration model to determine the time to carry out the regeneration of the DPF. It was found that the regeneration should be initiated when the cake layer is at a certain thickness, since a cake layer with either too big or too small an amount of particulates will need more thermal energy to reach a higher regeneration efficiency. 4 Formulate diesel particulate trap regeneration strategies for real world driving conditions to find out the best desirable conditions for DPF regeneration. It was found that the regeneration should be initiated when the vehicle’s speed is high and during which there should not be any stops from the vehicle. Moreover, the regeneration duration is about 120 seconds and the inlet temperature for the regeneration is 710K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal combustion engines are, and will continue to be, a primary mode of power generation for ground transportation. Challenges exist in meeting fuel consumption regulations and emission standards while upholding performance, as fuel prices rise, and resource depletion and environmental impacts are of increasing concern. Diesel engines are advantageous due to their inherent efficiency advantage over spark ignition engines; however, their NOx and soot emissions can be difficult to control and reduce due to an inherent tradeoff. Diesel combustion is spray and mixing controlled providing an intrinsic link between spray and emissions, motivating detailed, fundamental studies on spray, vaporization, mixing, and combustion characteristics under engine relevant conditions. An optical combustion vessel facility has been developed at Michigan Technological University for these studies, with detailed tests and analysis being conducted. In this combustion vessel facility a preburn procedure for thermodynamic state generation is used, and validated using chemical kinetics modeling both for the MTU vessel, and institutions comprising the Engine Combustion Network international collaborative research initiative. It is shown that minor species produced are representative of modern diesel engines running exhaust gas recirculation and do not impact the autoignition of n-heptane. Diesel spray testing of a high-pressure (2000 bar) multi-hole injector is undertaken including non-vaporizing, vaporizing, and combusting tests, with sprays characterized using Mie back scatter imaging diagnostics. Liquid phase spray parameter trends agree with literature. Fluctuations in liquid length about a quasi-steady value are quantified, along with plume to plume variations. Hypotheses are developed for their causes including fuel pressure fluctuations, nozzle cavitation, internal injector flow and geometry, chamber temperature gradients, and turbulence. These are explored using a mixing limited vaporization model with an equation of state approach for thermopyhysical properties. This model is also applied to single and multi-component surrogates. Results include the development of the combustion research facility and validated thermodynamic state generation procedure. The developed equation of state approach provides application for improving surrogate fuels, both single and multi-component, in terms of diesel spray liquid length, with knowledge of only critical fuel properties. Experimental studies are coupled with modeling incorporating improved thermodynamic non-ideal gas and fuel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diesel oxidation catalyst (DOC) with a catalyzed diesel particulate filter (CPF) is an effective exhaust aftertreatment device that reduces particulate emissions from diesel engines, and properly designed DOC-CPF systems provide passive regeneration of the filter by the oxidation of PM via thermal and NO2/temperature-assisted means under various vehicle duty cycles. However, controlling the backpressure on engines caused by the addition of the CPF to the exhaust system requires a good understanding of the filtration and oxidation processes taking place inside the filter as the deposition and oxidation of solid particulate matter (PM) change as functions of loading time. In order to understand the solid PM loading characteristics in the CPF, an experimental and modeling study was conducted using emissions data measured from the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR system and a DOC-CPF system (or a CCRT® - Catalyzed Continuously Regenerating Trap®, as named by Johnson Matthey) in the exhaust system. A series of experiments were conducted to evaluate the performance of the DOC-only, CPF-only and DOC-CPF configurations at two engine speeds (2200 and 1650 rpm) and various loads on the engine ranging from 5 to 100% of maximum torque at both speeds. Pressure drop across the DOC and CPF, mass deposited in the CPF at the end of loading, upstream and downstream gaseous and particulate emissions, and particle size distributions were measured at different times during the experiments to characterize the pressure drop and filtration efficiency of the DOCCPF system as functions of loading time. Pressure drop characteristics measured experimentally across the DOC-CPF system showed a distinct deep-bed filtration region characterized by a non-linear pressure drop rise, followed by a transition region, and then by a cake-filtration region with steadily increasing pressure drop with loading time at engine load cases with CPF inlet temperatures less than 325 °C. At the engine load cases with CPF inlet temperatures greater than 360 °C, the deep-bed filtration region had a steep rise in pressure drop followed by a decrease in pressure drop (due to wall PM oxidation) in the cake filtration region. Filtration efficiencies observed during PM cake filtration were greater than 90% in all engine load cases. Two computer models, i.e., the MTU 1-D DOC model and the MTU 1-D 2-layer CPF model were developed and/or improved from existing models as part of this research and calibrated using the data obtained from these experiments. The 1-D DOC model employs a three-way catalytic reaction scheme for CO, HC and NO oxidation, and is used to predict CO, HC, NO and NO2 concentrations downstream of the DOC. Calibration results from the 1-D DOC model to experimental data at 2200 and 1650 rpm are presented. The 1-D 2-layer CPF model uses a ‘2-filters in series approach’ for filtration, PM deposition and oxidation in the PM cake and substrate wall via thermal (O2) and NO2/temperature-assisted mechanisms, and production of NO2 as the exhaust gas mixture passes through the CPF catalyst washcoat. Calibration results from the 1-D 2-layer CPF model to experimental data at 2200 rpm are presented. Comparisons of filtration and oxidation behavior of the CPF at sample load-cases in both configurations are also presented. The input parameters and selected results are also compared with a similar research work with an earlier version of the CCRT®, to compare and explain differences in the fundamental behavior of the CCRT® used in these two research studies. An analysis of the results from the calibrated CPF model suggests that pressure drop across the CPF depends mainly on PM loading and oxidation in the substrate wall, and also that the substrate wall initiates PM filtration and helps in forming a PM cake layer on the wall. After formation of the PM cake layer of about 1-2 µm on the wall, the PM cake becomes the primary filter and performs 98-99% of PM filtration. In all load cases, most of PM mass deposited was in the PM cake layer, and PM oxidation in the PM cake layer accounted for 95-99% of total PM mass oxidized during loading. Overall PM oxidation efficiency of the DOC-CPF device increased with increasing CPF inlet temperatures and NO2 flow rates, and was higher in the CCRT® configuration compared to the CPF-only configuration due to higher CPF inlet NO2 concentrations. Filtration efficiencies greater than 90% were observed within 90-100 minutes of loading time (starting with a clean filter) in all load cases, due to the fact that the PM cake on the substrate wall forms a very efficient filter. A good strategy for maintaining high filtration efficiency and low pressure drop of the device while performing active regeneration would be to clean the PM cake filter partially (i.e., by retaining a cake layer of 1-2 µm thickness on the substrate wall) and to completely oxidize the PM deposited in the substrate wall. The data presented support this strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A push to reduce dependency on foreign energy and increase the use of renewable energy has many gas stations pumping ethanol blended fuels. Recreational engines typically have less complex fuel management systems than that of the automotive sector. This prevents the engine from being able to adapt to different ethanol concentrations. Using ethanol blended fuels in recreational engines raises several consumer concerns. Engine performance and emissions are both affected by ethanol blended fuels. This research focused on assessing the impact of E22 on two-stroke and four-stroke snowmobiles. Three snowmobiles were used for this study. A 2009 Arctic Cat Z1 Turbo with a closed-loop fuel injection system, a 2009 Yamaha Apex with an open-loop fuel injection system and a 2010 Polaris Rush with an open-loop fuel injection system were used to determine the impact of E22 on snowmobile engines. A five mode emissions test was conducted on each of the snowmobiles with E0 and E22 to determine the impact of the E22 fuel. All of the snowmobiles were left in stock form to assess the effect of E22 on snowmobiles currently on the trail. Brake specific emissions of the snowmobiles running on E22 were compared to that of the E0 fuel. Engine parameters such as exhaust gas temperature, fuel flow, and relative air to fuel ratio (λ) were also compared on all three snowmobiles. Combustion data using an AVL combustion analysis system was taken on the Polaris Rush. This was done to compare in-cylinder pressures, combustion duration, and location of 50% mass fraction burn. E22 decreased total hydrocarbons and carbon monoxide for all of the snowmobiles and increased carbon dioxide. Peak power increased for the closed-loop fuel injected Arctic Cat. A smaller increase of peak power was observed for the Polaris due to a partial ability of the fuel management system to adapt to ethanol. A decrease in peak power was observed for the open-loop fuel injected Yamaha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro Combined Heat and Power (Micro-CHP) system produces both electricity and heat required for residential or small business applications. Use of Micro-CHP in a residential application not only creates energy and economic savings but also reduces the carbon foot print of the house or small business. Additionally, micro-CHP can subsidize its cost of operation by selling excess electricity produced back to the grid. Even though Micro-CHP remains attractive on paper, high initial cost and optimization issues in residential scale heat and electrical requirement has kept this technology from becoming a success. To understand and overcome all disadvantages posed my Micro-CHP system, a laboratory is developed to test different scenarios of Micro-CHP applications so that we can learn and improve the current technology. This report focuses on the development of this Micro-CHP laboratory including installation of Ecopower micro-CHP unit, developing fuel line and exhaust line for Ecopower unit, design of electrical and thermal loop, installing all the instrumentation required for data collection on the Ecopower unit and developing controls for heat load simulation using thermal loop. Also a simulation of Micro-CHP running on Syngas is done in Matlab. This work was supported through the donation of ‘Ecopower’ a Micro-CHP unit by Marathon Engine and through the support of Michigan Tech REF-IF grand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher. Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse. The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse. The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse. The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate matter (PM) emissions standards set by the US Environmental Protection Agency (EPA) have become increasingly stringent over the years. The EPA regulation for PM in heavy duty diesel engines has been reduced to 0.01 g/bhp-hr for the year 2010. Heavy duty diesel engines make use of an aftertreatment filtration device, the Diesel Particulate Filter (DPF). DPFs are highly efficient in filtering PM (known as soot) and are an integral part of 2010 heavy duty diesel aftertreatment system. PM is accumulated in the DPF as the exhaust gas flows through it. This PM needs to be removed by oxidation periodically for the efficient functioning of the filter. This oxidation process is also known as regeneration. There are 2 types of regeneration processes, namely active regeneration (oxidation of PM by external means) and passive oxidation (oxidation of PM by internal means). Active regeneration occurs typically in high temperature regions, about 500 - 600 °C, which is much higher than normal diesel exhaust temperatures. Thus, the exhaust temperature has to be raised with the help of external devices like a Diesel Oxidation Catalyst (DOC) or a fuel burner. The O2 oxidizes PM producing CO2 as oxidation product. In passive oxidation, one way of regeneration is by the use of NO2. NO2 oxidizes the PM producing NO and CO2 as oxidation products. The passive oxidation process occurs at lower temperatures (200 - 400 °C) in comparison to the active regeneration temperatures. Generally, DPF substrate walls are washcoated with catalyst material to speed up the rate of PM oxidation. The catalyst washcoat is observed to increase the rate of PM oxidation. The goal of this research is to develop a simple mathematical model to simulate the PM depletion during the active regeneration process in a DPF (catalyzed and non-catalyzed). A simple, zero-dimensional kinetic model was developed in MATLAB. Experimental data required for calibration was obtained by active regeneration experiments performed on PM loaded mini DPFs in an automated flow reactor. The DPFs were loaded with PM from the exhaust of a commercial heavy duty diesel engine. The model was calibrated to the data obtained from active regeneration experiments. Numerical gradient based optimization techniques were used to estimate the kinetic parameters of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel-lean combustion and exhaust gas recirculation (EGR) in spark ignition engines improve engine efficiency and reduce emission. However, flame initiation becomes more difficult in lean and dilute fuel-air mixture with traditional spark discharge. This research proposal will first provide an intensive review on topics related to spark ignition including properties of electrical discharge, flame kernel behavior and spark ignition modeling and simulation. Focus will be laid on electrical discharge pattern effect as it is showing prospect in extending ignition limits in SI engines. An experimental setup has been built with an optically accessible constant volume combustion vessel. Multiple imaging techniques as well as spectroscopy will be applied. By varying spark discharge patterns, preliminary test results are available on consequent flame kernel development. In addition to experimental investigation of spark plasma and flame kernel development, spark ignition modeling with detailed description of plasma channel is also proposed for this study.