2 resultados para ROR-GAMMA-T
em Digital Commons - Michigan Tech
Measuring energy spectra of TeV gamma-ray emission from the Cygnus region of our galaxy with Milagro
Resumo:
High energy gamma rays can provide fundamental clues to the origins of cosmic rays. In this thesis, TeV gamma-ray emission from the Cygnus region is studied. Previously the Milagro experiment detected five TeV gamma-ray sources in this region and a significant excess of TeV gamma rays whose origin is still unclear. To better understand the diffuse excess the separation of sources and diffuse emission is studied using the latest and most sensitive data set of the Milagro experiment. In addition, a newly developed technique is applied that allows the energy spectrum of the TeV gamma rays to be reconstructed using Milagro data. No conclusive statement can be made about the spectrum of the diffuse emission from the Cygnus region because of its low significance of 2.2 σ above the background in the studied data sample. The entire Cygnus region emission is best fit with a power law with a spectral index of α=2.40 (68% confidence interval: 1.35-2.92) and a exponential cutoff energy of 31.6 TeV (10.0-251.2 TeV). In the case of a simple power law assumption without a cutoff energy the best fit yields a spectral index of α=2.97 (68% confidence interval: 2.83-3.10). Neither of these best fits are in good agreement with the data. The best spectral fit to the TeV emission from MGRO J2019+37, the brightest source in the Cygnus region, yields a spectral index of α=2.30 (68% confidence interval: 1.40-2.70) with a cutoff energy of 50.1 TeV (68% confidence interval: 17.8-251.2 TeV) and a spectral index of α=2.75 (68% confidence interval: 2.65-2.85) when no exponential cutoff energy is assumed. According to the present analysis, MGRO J2019+37 contributes 25% to the differential flux from the entire Cygnus at 15 TeV.
Resumo:
The High-Altitude Water Cherenkov (HAWC) Experiment is a gamma-ray observatory that utilizes water silos as Cherenkov detectors to measure the electromagnetic air showers created by gamma rays. The experiment consists of an array of closely packed water Cherenkov detectors (WCDs), each with four photomultiplier tubes (PMTs). The direction of the gamma ray will be reconstructed using the times when the electromagnetic shower front triggers PMTs in each WCD. To achieve an angular resolution as low as 0.1 degrees, a laser calibration system will be used to measure relative PMT response times. The system will direct 300ps laser pulses into two fiber-optic networks. Each network will use optical fan-outs and switches to direct light to specific WCDs. The first network is used to measure the light transit time out to each pair of detectors, and the second network sends light to each detector, calibrating the response times of the four PMTs within each detector. As the relative PMT response times are dependent on the number of photons in the light pulse, neutral density filters will be used to control the light intensity across five orders of magnitude. This system will run both continuously in a low-rate mode, and in a high-rate mode with many intensity levels. In this thesis, the design of the calibration system and systematic studies verifying its performance are presented.