4 resultados para ROR-GAMMA-T
em CaltechTHESIS
Resumo:
We perform a measurement of direct CP violation in b to s+gamma Acp, and the measurement of a difference between Acp for neutral B and charged B mesons, Delta A_{X_s\gamma}, using 429 inverse femtobarn of data recorded at the Upsilon(4S) resonance with the BABAR detector. B mesons are reconstructed from 16 exclusive final states. Particle identification is done using an algorithm based on Error Correcting Output Code with an exhaustive matrix. Background rejection and best candidate selection are done using two decision tree-based classifiers. We found $\acp = 1.73%+-1.93%+-1.02% and Delta A_X_sgamma = 4.97%+-3.90%+-1.45% where the uncertainties are statistical and systematic respectively. Based on the measured value of Delta A_X_sgamma, we determine a 90% confidence interval for Im C_8g/C_7gamma, where C_7gamma and C_8g are Wilson coefficients for New Physics amplitudes, at -1.64 < Im C_8g/C_7gamma < 6.52.
Resumo:
Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.
We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.
Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.
Resumo:
The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.
The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.
Resumo:
Energies and relative intensities of gamma transitions in 152Sm, 152Gd, 154Gd, 166Er, and 232U following radioactive decay have been measured with a Ge(Li) spectrometer. A peak fitting program has been developed to determine gamma ray energies and relative intensities with precision sufficient to give a meaningful test of nuclear models. Several previously unobserved gamma rays were placed in the nuclear level schemes. Particular attention has been paid to transitions from the beta and gamma vibrational bands, since the gamma ray branching ratios are sensitive tests of configuration mixing in the nuclear levels. As the reduced branching ratios depend on the multipolarity of the gamma transitions, experiments were performed to measure multipole mixing ratios for transitions from the gamma vibrational band. In 154Gd, angular correlation experiments showed that transitions from the gamma band to the ground state band were predominantly electric quadrupole, in agreement with the rotational model. In 232U, the internal conversion spectrum has been studied with a Si(Li) spectrometer constructed for electron spectroscopy. The strength of electric monopole transitions and the multipolarity of some gamma transitions have been determined from the measured relative electron intensities.
The results of the experiments have been compared with the rotational model and several microscopic models. Relative B(E2) strengths for transitions from the gamma band in 232U and 166Er are in good agreement with a single parameter band mixing model, with values of z2= 0.025(10) and 0.046(2), respectively. Neither the beta nor the gamma band transition strengths in 152Sm and 154Gd can be accounted for by a single parameter theory, nor can agreement be found by considering the large mixing found between the beta and gamma bands. The relative B(E2) strength for transitions from the gamma band to the beta band in 232U is found to be five times greater than the strength to the ground state band, indicating collective transitions with strength approximately 15 single particle units.