5 resultados para Quantum Space Complexity
em Digital Commons - Michigan Tech
Resumo:
Virtually every sector of business and industry that uses computing, including financial analysis, search engines, and electronic commerce, incorporate Big Data analysis into their business model. Sophisticated clustering algorithms are popular for deducing the nature of data by assigning labels to unlabeled data. We address two main challenges in Big Data. First, by definition, the volume of Big Data is too large to be loaded into a computer’s memory (this volume changes based on the computer used or available, but there is always a data set that is too large for any computer). Second, in real-time applications, the velocity of new incoming data prevents historical data from being stored and future data from being accessed. Therefore, we propose our Streaming Kernel Fuzzy c-Means (stKFCM) algorithm, which reduces both computational complexity and space complexity significantly. The proposed stKFCM only requires O(n2) memory where n is the (predetermined) size of a data subset (or data chunk) at each time step, which makes this algorithm truly scalable (as n can be chosen based on the available memory). Furthermore, only 2n2 elements of the full N × N (where N >> n) kernel matrix need to be calculated at each time-step, thus reducing both the computation time in producing the kernel elements and also the complexity of the FCM algorithm. Empirical results show that stKFCM, even with relatively very small n, can provide clustering performance as accurately as kernel fuzzy c-means run on the entire data set while achieving a significant speedup.
Resumo:
Free space optical (FSO) communication links can experience extreme signal degradation due to atmospheric turbulence induced spatial and temporal irradiance fuctuations (scintillation) in the laser wavefront. In addition, turbulence can cause the laser beam centroid to wander resulting in power fading, and sometimes complete loss of the signal. Spreading of the laser beam and jitter are also artifacts of atmospheric turbulence. To accurately predict the signal fading that occurs in a laser communication system and to get a true picture of how this affects crucial performance parameters like bit error rate (BER) it is important to analyze the probability density function (PDF) of the integrated irradiance fuctuations at the receiver. In addition, it is desirable to find a theoretical distribution that accurately models these ?uctuations under all propagation conditions. The PDF of integrated irradiance fuctuations is calculated from numerical wave-optic simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to very strong. Our results show that the gamma-gamma PDF provides a good fit to the simulated data distribution for all aperture sizes studied from weak through moderate scintillation. In strong scintillation, the gamma-gamma PDF is a better fit to the distribution for point-like apertures and the lognormal PDF is a better fit for apertures the size of the atmospheric spatial coherence radius ρ0 or larger. In addition, the PDF of received power from a Gaussian laser beam, which has been adaptively compensated at the transmitter before propagation to the receiver of a FSO link in the moderate scintillation regime is investigated. The complexity of the adaptive optics (AO) system is increased in order to investigate the changes in the distribution of the received power and how this affects the BER. For the 10 km link, due to the non-reciprocal nature of the propagation path the optimal beam to transmit is unknown. These results show that a low-order level of complexity in the AO provides a better estimate for the optimal beam to transmit than a higher order for non-reciprocal paths. For the 20 km link distance it was found that, although minimal, all AO complexity levels provided an equivalent improvement in BER and that no AO complexity provided the correction needed for the optimal beam to transmit. Finally, the temporal power spectral density of received power from a FSO communication link is investigated. Simulated and experimental results for the coherence time calculated from the temporal correlation function are presented. Results for both simulation and experimental data show that the coherence time increases as the receiving aperture diameter increases. For finite apertures the coherence time increases as the communication link distance is increased. We conjecture that this is due to the increasing speckle size within the pupil plane of the receiving aperture for an increasing link distance.
Resumo:
In recent years, the bio-conjugated nanostructured materials have emerged as a new class of materials for the bio-sensing and medical diagnostics applications. In spite of their multi-directional applications, interfacing nanomaterials with bio-molecules has been a challenge due to somewhat limited knowledge about the underlying physics and chemistry behind these interactions and also for the complexity of biomolecules. The main objective of this dissertation is to provide such a detailed knowledge on bioconjugated nanomaterials toward their applications in designing the next generation of sensing devices. Specifically, we investigate the changes in the electronic properties of a boron nitride nanotube (BNNT) due to the adsorption of different bio-molecules, ranging from neutral (DNA/RNA nucleobases) to polar (amino acid molecules). BNNT is a typical member of III-V compounds semiconductors with morphology similar to that of carbon nanotubes (CNTs) but with its own distinct properties. More specifically, the natural affinity of BNNTs toward living cells with no apparent toxicity instigates the applications of BNNTs in drug delivery and cell therapy. Our results predict that the adsorption of DNA/RNA nucleobases on BNNTs amounts to different degrees of modulation in the band gap of BNNTs, which can be exploited for distinguishing these nucleobases from each other. Interestingly, for the polar amino acid molecules, the nature of interaction appeared to vary ranging from Coulombic, van der Waals and covalent depending on the polarity of the individual molecules, each with a different binding strength and amount of charge transfer involved in the interaction. The strong binding of amino acid molecules on the BNNTs explains the observed protein wrapping onto BNNTs without any linkers, unlike carbon nanotubes (CNTs). Additionally, the widely varying binding energies corresponding to different amino acid molecules toward BNNTs indicate to the suitability of BNNTs for the biosensing applications, as compared to the metallic CNTs. The calculated I-V characteristics in these bioconjugated nanotubes predict notable changes in the conductivity of BNNTs due to the physisorption of DNA/RNA nucleobases. This is not the case with metallic CNTs whose transport properties remained unaltered in their conjugated systems with the nucleobases. Collectively, the bioconjugated BNNTs are found to be an excellent system for the next generation sensing devices.
Resumo:
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Resumo:
This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity Pb(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations ±cos2(θ12) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear fiber (HNLF) at 77 K, we observed coincidence to accidental-coincidence ratio of 130±5 for correlated photon-pair and Two-Photon Interference visibility >98% entangled photon-pair. We also verified the non-local behavior of polarization-entangled photon pair by violating Clauser-Horne-Shimony-Holt Bell’s inequality by more than 12 standard deviations. With the HNLF at 300 K (77 K), photon-pair production rate about factor 3(2) higher than a 300 m dispersion-shifted fiber is observed. Then, we studied quantum correlation and interference of photon-pairs; with one photon of the photon-air experiencing multiple scattering in a random medium. We observed that depolarization noise photon in multiple scattering degrading the purity of photon-pair, and the existence of Raman noise photon in a photon-pair source will contribute to the depolarization affect. We found that quantum correlation of polarization-entangled photon-pair is better preserved than polarization-correlated photon-pair as one photon of the photon-pair scattered through a random medium. Our findings showed that high purity polarization-entangled photon-pair is better candidate for long distance quantum key distribution.