7 resultados para Marangoni Flows

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on the evolution of geomagnetic paleointensity are crucial for understanding the geodynamo and Earth’s thermal history. Although basaltic flows are preferred for paleointensity experiments, quickly cooled mafic dykes have also been used. However, the paleointensity values obtained from the dykes are systematically lower than those from lava flows. This bias may originate from the difference in cooling histories and resultant magnetic mineralogies of extrusive and intrusive rocks. To explore this hypothesis, the magnetic mineralogy of two feeder dyke-lave flow systems, from Thunder Bay (Canada) and La Cienega (New-Mexico), has been studied using magnetic and microscopy methods. Within each system, the flow and dyke show different stages of deuteric oxidation of titanomagnetite, but the oxidation stages also differ between the two systems. It is concluded that the tested hypothesis is viable, but the relationships between the magnetic and mineralogical properties of flows and dykes are complex and need a further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis presents the experimental results along with a suitable synthesis with computational/theoretical results towards development of a reliable heat transfer correlation for a specific annular condensation flow regime inside a vertical tube. For fully condensing flows of pure vapor (FC-72) inside a vertical cylindrical tube of 6.6 mm diameter and 0.7 m length, the experimental measurements are shown to yield values of average heat transfer co-efficient, and approximate length of full condensation. The experimental conditions cover: mass flux G over a range of 2.9 kg/m2-s ≤ G ≤ 87.7 kg/m2-s, temperature difference ∆T (saturation temperature at the inlet pressure minus the mean condensing surface temperature) of 5 ºC to 45 ºC, and cases for which the length of full condensation xFC is in the range of 0 < xFC < 0.7 m. The range of flow conditions over which there is good agreement (within 15%) with the theory and its modeling assumptions has been identified. Additionally, the ranges of flow conditions for which there are significant discrepancies (between 15 -30% and greater than 30%) with theory have also been identified. The paper also refers to a brief set of key experimental results with regard to sensitivity of the flow to time-varying or quasi-steady (i.e. steady in the mean) impositions of pressure at both the inlet and the outlet. The experimental results support the updated theoretical/computational results that gravity dominated condensing flows do not allow such elliptic impositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic ash clouds can be fed by an upward-directed eruption column (Plinian column) or by elutriation from extensive pyroclastic-flows (coignimbrite cloud). For large-scale eruptions, there is considerable uncertainty about which mechanism is dominant. Here we analyze in a novel way a comprehensive grainsize database for pyroclastic deposits. We demonstrate that the Mount Pinatubo climactic eruption deposits were substantially derived from coignimbrite clouds, and not only by a Plinian cloud as generally thought. Coignimbrite ash-fall deposits are much richer in breathable <10 m ash (5–25 wt%) than pure Plinian ash at most distances from the source volcano. We also show that coignimbrite ash clouds, as at Pinatubo, are expected to be more water rich than Plinian clouds, leading to removal of more HCl prior to stratospheric injection, thereby reducing their atmospheric impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents an effective quasi one-dimensional (1-D) computational simulation tool and a full two-dimensional (2-D) computational simulation methodology for steady annular/stratified internal condensing flows of pure vapor. These simulation tools are used to investigate internal condensing flows in both gravity as well as shear driven environments. Through accurate numerical simulations of the full two dimensional governing equations, results for laminar/laminar condensing flows inside mm-scale ducts are presented. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady (and unsteady flows). Moreover, a novel 1-D solution technique, capable of simulating condensing flows inside rectangular and circular ducts with different thermal boundary conditions is also presented. The results obtained from the 2-D scientific tool and 1-D engineering tool, are validated and synthesized with experimental results for gravity dominated flows inside vertical tube and inclined channel; and, also, for shear/pressure driven flows inside horizontal channels. Furthermore, these simulation tools are employed to demonstrate key differences of physics between gravity dominated and shear/pressure driven flows. A transition map that distinguishes shear driven, gravity driven, and “mixed” driven flow zones within the non-dimensional parameter space that govern these duct flows is presented along with the film thickness and heat transfer correlations that are valid in these zones. It has also been shown that internal condensing flows in a micro-meter scale duct experiences shear driven flow, even in different gravitational environments. The full 2-D steady computational tool has been employed to investigate the length of annularity. The result for a shear driven flow in a horizontal channel shows that in absence of any noise or pressure fluctuation at the inlet, the onset of non-annularity is partly due to insufficient shear at the liquid-vapor interface. This result is being further corroborated/investigated by R. R. Naik with the help of the unsteady simulation tool. The condensing flow results and flow physics understanding developed through these simulation tools will be instrumental in reliable design of modern micro-scale and spacebased thermal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis presents the computational work and synthesis with experiments for internal (tube and channel geometries) as well as external (flow of a pure vapor over a horizontal plate) condensing flows. The computational work obtains accurate numerical simulations of the full two dimensional governing equations for steady and unsteady condensing flows in gravity/0g environments. This doctoral work investigates flow features, flow regimes, attainability issues, stability issues, and responses to boundary fluctuations for condensing flows in different flow situations. This research finds new features of unsteady solutions of condensing flows; reveals interesting differences in gravity and shear driven situations; and discovers novel boundary condition sensitivities of shear driven internal condensing flows. Synthesis of computational and experimental results presented here for gravity driven in-tube flows lays framework for the future two-phase component analysis in any thermal system. It is shown for both gravity and shear driven internal condensing flows that steady governing equations have unique solutions for given inlet pressure, given inlet vapor mass flow rate, and fixed cooling method for condensing surface. But unsteady equations of shear driven internal condensing flows can yield different “quasi-steady” solutions based on different specifications of exit pressure (equivalently exit mass flow rate) concurrent to the inlet pressure specification. This thesis presents a novel categorization of internal condensing flows based on their sensitivity to concurrently applied boundary (inlet and exit) conditions. The computational investigations of an external shear driven flow of vapor condensing over a horizontal plate show limits of applicability of the analytical solution. Simulations for this external condensing flow discuss its stability issues and throw light on flow regime transitions because of ever-present bottom wall vibrations. It is identified that laminar to turbulent transition for these flows can get affected by ever present bottom wall vibrations. Detailed investigations of dynamic stability analysis of this shear driven external condensing flow result in the introduction of a new variable, which characterizes the ratio of strength of the underlying stabilizing attractor to that of destabilizing vibrations. Besides development of CFD tools and computational algorithms, direct application of research done for this thesis is in effective prediction and design of two-phase components in thermal systems used in different applications. Some of the important internal condensing flow results about sensitivities to boundary fluctuations are also expected to be applicable to flow boiling phenomenon. Novel flow sensitivities discovered through this research, if employed effectively after system level analysis, will result in the development of better control strategies in ground and space based two-phase thermal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiments observe and measure the length of the annular regime in fully condensing quasi-steady (steady-in-the-mean) flows of pure FC-72 vapor in a horizontal condenser (rectangular cross-section of 2 mm height, 15 mm width, and 1 m length). The sides and top of the duct are made of clear plastic that allows flow visualization. The experimental system in which this condenser is used is able to control and achieve different quasi-steady mass flow rates, inlet pressures, and wall cooling conditions (by adjustment of the temperature and flow rate of the cooling water flowing underneath the condensing-plate). The reported correlations and measurements for the annular length are also vital information for determining the length of the annular regime and proposing extended correlation (covering many vapors and a larger parameter set than the experimentally reported version here) by ongoing independent modeling and computational simulation approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.