4 resultados para Horizontal Infiltration

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction methods to compensate turbulence effects. While many image reconstruction methods have been proposed, their suitability for use in man-portable embedded systems is uncertain. To be effective, these systems must operate over significant variations in turbulence conditions while subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods have recently been proposed as being well suited for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. Design parameters are selected by parametric evaluation of system performance as factors external to the system are varied. The precise control necessary for such an evaluation is made possible using image sets of turbulence degraded imagery developed using a novel technique for simulating anisoplanatic image formation over long horizontal paths. System performance is statistically evaluated over multiple reconstruction using the Mean Squared Error (MSE) to evaluate reconstruction quality. In addition to more general design parameters, the relative performance the bispectrum and the Knox-Thompson phase recovery methods is also compared. As an outcome of this work it can be concluded that speckle-imaging techniques are robust to the variation in turbulence conditions and user controlled parameters expected when operating during the day over long horizontal paths. Speckle imaging systems that incorporate 15 or more image frames and 4 estimates of the object phase per reconstruction provide up to 45% reduction in MSE and 68% reduction in the deviation. In addition, Knox-Thompson phase recover method is shown to produce images in half the time required by the bispectrum. The quality of images reconstructed using Knox-Thompson and bispectrum methods are also found to be nearly identical. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiments observe and measure the length of the annular regime in fully condensing quasi-steady (steady-in-the-mean) flows of pure FC-72 vapor in a horizontal condenser (rectangular cross-section of 2 mm height, 15 mm width, and 1 m length). The sides and top of the duct are made of clear plastic that allows flow visualization. The experimental system in which this condenser is used is able to control and achieve different quasi-steady mass flow rates, inlet pressures, and wall cooling conditions (by adjustment of the temperature and flow rate of the cooling water flowing underneath the condensing-plate). The reported correlations and measurements for the annular length are also vital information for determining the length of the annular regime and proposing extended correlation (covering many vapors and a larger parameter set than the experimentally reported version here) by ongoing independent modeling and computational simulation approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High horizontal stresses can cause numerous ground control problems in mines and other underground structures ultimately impacting worker safety, productivity and the economics of an underground operation. Mine layout and design can be optimized when the presence and orientation of these stresses are recognized and their impact minimized. A simple technique for correlating the principal horizontal stress direction in a sedimentary rock mass with the preferential orientation of moisture induced expansion in a sample of the same rock was introduced in the 1970s and has since gone un-reported and unused. This procedure was reexamined at a locality near the original test site at White Pine, Michigan in order to validate the original research and to consider its usefulness in mining and civil engineering applications in high horizontal stress conditions. This procedure may also be useful as an economical means for characterizing regional stress fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.