6 resultados para 290701 Mining Engineering

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrical power source is a critical component of the scoping level study as the source affects both the project economics and timeline. This paper proposes a systematic approach to selecting an electrical power source for a new mine. Orvana Minerals Copperwood project is used as a case study. The Copperwood results show that the proposed scoping level approach is consistent with the subsequent much more detailed feasibility study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selective flocculation and dispersion processes rely on differences in the surface chemistry of fine mineral particles (<25 >ìm) to allow for the concentration of specific minerals from an ore body. The effectiveness of selective flocculation and dispersion processes for the concentration of hematite (Fe2O3) ore are strongly dependent on the ionic content of the process water. The goal of this research was to analyze the ionic content of an operating selective flocculation and dispersion type hematite ore concentrator and determine how carbon dioxide affects the filtration of the final product. A detailed water chemistry analysis of the entire process was determined to show concentration profiles throughout the process. This information was used to explain process phenomena and promote future research into this subject. A subsequent laboratory study was conducted to show how carbon dioxide affects filtration rate and relate this effect to the zeta potential of the constituents of the concentrated hematite ore.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2003, a large landslide occurred along the Ontonagon River, located in the Upper Peninsula of Michigan, and adjacent to US-45 in Ontonagon County. The failure took place during the springtime, when the river reached a peak discharge that was the second highest on record. The volume of the slide has been estimated to be approximately 1,400,000 cubic yards. The colluvium blocked the river, forcing a new channel to be carved around the debris. The landslide consisted of a silt layer at its base, overlain by a coarsening upward sand sequence, and finally a varved glacio-lacustrine clay with sparse dropstone inclusions making up the upper section of hillside.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iron ore is one of the most important ores in the world. Over the past century, most mining of iron ore has been focused on magnetite (Fe3O4). As the name suggests, magnetite is magnetic in nature and is easily separated from gangue (unwanted) minerals through magnetic separation processes. Unfortunately, the magnetite ore bodies are diminishing. Because of this, there has been a recent drive to pursue technology that can economically separate hematite (Fe2O3) from its gangue minerals as hematite is a much more abundant source of iron. Most hematite ore has a very small liberation size that is frequently less than 25μm. Beneficiation of any ore with this fine of a liberation size requires advanced processing methods and is seldom pursued. A single process, known as selective flocculation and dispersion, has been successfully implemented at a plant scale for the beneficiation of fine liberation size hematite ore. Very little is known about this process as it was discovered by the U.S. Bureau of Mines by accident. The process is driven by water chemistry and surface chemistry modifications that enhance the separation of the hematite from its gangue minerals. This dissertation focuses on the role of water chemistry and process reagents in this hematite beneficiation process. It has been shown that certain ions, including calcium and magnesium, play a significant role in the process. These ions have a significant effect on the surface chemistry as reported by zeta potential studies. It was shown that magnesium ions within the process water have a more significant impact on surface chemistry than calcium ions due to steric hindrance effects at the hematite surface. It has also been shown that polyacrylic acid dispersants, if used in the process, can increase product quality (increase iron content, decrease phosphorus content, decrease silica content) substantially. Water, surface and reagent chemistry experiments were performed at a laboratory, pilot, and full plant scale during the course of this work. Many of the conclusions developed in the laboratory and pilot scale were found to be true at the full plant scale as well. These studies are the first published in history to develop theories of water chemistry and surface chemistry interactions at a full plant scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the compressive properties of concrete incorporating Mature Fine Tailings (MFTs) waste stream from a tar sands mining operation. The objectives of this study are to investigate material properties of the MFT material itself, as well as establish general feasibility of the utilization of MFT material in concrete mixtures through empirical data and visual observations. Investigations undertaken in this study consist of moisture content, materials finer than No. 200 sieve, Atterburg Limits as well as visual observations performed on MFT material as obtained. Control concrete mixtures as well as MFT replacement mixture designs (% by wt. of water) were guided by properties of the MFT material that were experimentally established. The experimental design consists of compression testing of 4”-diameter concrete cylinders of a control mixture, 30% MFT, 50% MFT and 70% MFT replacement mixtures with air-entrainer additive, as well as a control mixture and 30% MFT replacement mixture with no air-entrainer. A total of 6 mixtures (2 control mixtures, 4 replacement mixtures) moist-cured in lime water after 24 hours initial curing were tested for ultimate compressive strength at 7 days and 28 days in accordance to ASTM C39. The test results of fresh concrete material show that the addition of air-entrainer to the control mixture increases slump from 4” to 5.5”. However, the use of MFT material in concrete mixtures significantly decreases slump as compared to controls. All MFT replacement mixtures (30%, 50%, and 70%) with air-entrainer present slumps of 1”. 30% MFT with no air-entrainer presents a slump of 1.5”. It was found that 7-day ultimate compressive stress was not a good predictor of 28-day ultimate compressive stress. 28-day results indicate that the use of MFT material in concrete with air-entrainer decreases ultimate compressive stress for 30%, 50% and 70% MFT replacement amounts by 14.2%, 17.3% and 25.1% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.