996 resultados para Michigan Tech
Resumo:
The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher. Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse. The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse. The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse. The writing and defense of the dissertation serve both as demonstration one is able to do the work of a scholar and as a rite of initiation. In contrast to much academic writing, dissertations generally adhere to narrowly conceived notions of academic discourse. I explore this within the context of an academic community in which under-representation remains a serious issue. This dissertation is about women writing dissertations. I draw from conversations with fifteen women, in or beyond, the process; friends’ anecdotes; published accounts; and, autobiographically, my experience. I suggest the dissertation’s initiatory role is at least as important as its scholarly role; during the process one establishes a sense of self as scholar, writer, and researcher Students come to the dissertation with some notion of self as writer and scholar – a culturally negotiated sense that is more, or less, congruent with the culturally established self required for successful completion of the dissertation. The degree of congruence (or alternatively, harmony and dissonance) shapes the process of doing a dissertation. I argue that both the community and the language in which dissertations must generally be written are gendered masculine. Negotiating a voice that is acceptable in a dissertation while maintain fidelity to a sense of who one is seems more problematic as one’s distance from the center of dominant culture increases. Believing that agency lies in altering the reiteration of such processes, I worked with my committee to find ways to alter the process yet still do a dissertation I write in a variety of voices – essay and poetry as well as analytical – play with visual qualities of text, and experiment with non-verbal interpretations. These don’t exhaust possibilities, but do give a sense of how the rich variety of expression found in academe cam be brought into the dissertation. I thus demonstrate that one need not reconstitute herself through characteristic academic discourse in order to be initiated into the community of scholars. I suggest both the desirability of encouraging flexibility in the language, form, and process, of dissertations, and the theoretical necessity for such flexibility if the academic community is to become diverse.
Resumo:
Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.
Resumo:
Rainwater harvesting (RWH) has a long history and has been supported as an appropriate technology and relatively cheap source of domestic water supply. This study compares the suitability of RWH and piped water systems in three rural Dominican communities seeking to improve their water systems. Ethnographic methods considering the views of residents and feasibility and cost analysis of the options were used to conclude that RWH is not a feasible or cost-effective solution for domestic water needs of all households in the communities studied. RWH investment is best left to individual households that can implement informal RWH with incremental increases in storage volume. Piped water distribution (PWD) systems perceived as too large or expensive to implement have much lower capital costs and are more supported by residents as a solution because they provide large quantities of water needed to maintain water services beyond mere survival levels.
Resumo:
El Balsamar is a community that relies upon coffee trees intercropped with the balsamo tree (Myroxylon balsamum L. Harms) for a substantial portion of household income. The balsamo tree is valued for its resin which is used as medicine in the community and sold commercially. Farmers believe that the shade from the balsamo tree decreases coffee yield compared to the shade from non balsamo species. Thirty coffee farms were studied, each set up as a paired plot. When cover type was balsamo, coffee yield was more likely to decrease. Plots with higher basal area were more likely to be balsamo cover type. As basal area increased, coffee yield decreased. Although coffee yield is lower under balsamo cover type, farmers still continue to plant and manage coffee under this cover type. Farmers accept a lower coffee yield because balsamo resin provides an important income source. Farmers rely on the community cooperative to provide them work to support their households. The cooperative relies on the farmers to provide the labor needed to harvest coffee and extract balsamo resin.
Resumo:
Small-scale village woodlots of less than 0.5ha are the preferred use of land for local farmers with extra land in the village of Isangati, a small community located in the southern highlands of Tanzania. Farmers view woodlots as lucrative investments that do not involve intensive labor or time. The climate is ideal for the types of trees grown and the risks are minimal with no serious threats from insects, fires, thieves, or grazing livestock. It was hypothesized that small-scale village woodlot owners were not maximizing timber outputs with their current timber stand management and harvesting techniques. Personal interviews were conducted over a five month period and field data was collected at each farmer’s woodlots over a seven month period. Woodlot field data included woodlot size, number of trees, tree species, tree height, dbh, age, and spacing. The results indicated that the lack of proper woodlot management techniques results in failure to fully capitalize on the investment of woodlots. While farmers should continue with their current harvesting rotations, some of the reasons for not maximizing tree growth include close spacing (2m x 2m), no tree thinning, extreme pruning (60% of tree), and little to no weeding. Through education and hands-on woodlot management workshops, the farmers could increase their timber output and value of woodlots.
Resumo:
In recent times, the demand for the storage of electrical energy has grown rapidly for both static applications and the portable electronics enforcing the substantial improvement in battery systems, and Li-ion batteries have been proven to have maximum energy storage density in all rechargeable batteries. However, major breakthroughs are required to consummate the requirement of higher energy density with lower cost to penetrate new markets. Graphite anode having limited capacity has become a bottle neck in the process of developing next generation batteries and can be replaced by higher capacity metals such as Silicon. In the present study we are focusing on the mechanical behavior of the Si-thin film anode under various operating conditions. A numerical model is developed to simulate the intercalation induced stress and the failure mechanism of the complex anode structure. Effect of the various physical phenomena such as diffusion induced stress, plasticity and the crack propagation are investigated to predict better performance parameters for improved design.
Resumo:
In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.
Resumo:
For a fluid dynamics experimental flow measurement technique, particle image velocimetry (PIV) provides significant advantages over other measurement techniques in its field. In contrast to temperature and pressure based probe measurements or other laser diagnostic techniques including laser Doppler velocimetry (LDV) and phase Doppler particle analysis (PDPA), PIV is unique due to its whole field measurement capability, non-intrusive nature, and ability to collect a vast amount of experimental data in a short time frame providing both quantitative and qualitative insight. These properties make PIV a desirable measurement technique for studies encompassing a broad range of fluid dynamics applications. However, as an optical measurement technique, PIV also requires a substantial technical understanding and application experience to acquire consistent, reliable results. Both a technical understanding of particle image velocimetry and practical application experience are gained by applying a planar PIV system at Michigan Technological University’s Combustion Science Exploration Laboratory (CSEL) and Alternative Fuels Combustion Laboratory (AFCL). Here a PIV system was applied to non-reacting and reacting gaseous environments to make two component planar PIV as well as three component stereographic PIV flow field velocity measurements in conjunction with chemiluminescence imaging in the case of reacting flows. This thesis outlines near surface flow field characteristics in a tumble strip lined channel, three component velocity profiles of non-reacting and reacting swirled flow in a swirl stabilized lean condition premixed/prevaporized-fuel model gas turbine combustor operating on methane at 5-7 kW, and two component planar PIV measurements characterizing the AFCL’s 1.1 liter closed combustion chamber under dual fan driven turbulent mixing flow.
Resumo:
This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.
Resumo:
In the field of photonics, two new types of material structures, photonic crystals and metamaterials, are presently of great interest. Both are studied in the present work, which focus on planar magnetic materials in the former and planar gradient metamaterials in the latter. These planar periodic structures are easy to handle and integrate into optical systems. The applications are promising field for future optical telecommunication systems and give rise to new optical, microwave and radio technologies. The photonic crystal part emphasizes the utilization of magnetic material based photonic crystals due to its remarkable magneto-optical characteristics. Bandgaps tuning by magnetic field in bismuth-gadolinium-substituted lutetium iron garnet (Bi0.8 Gd0.2 Lu2.0 Fe5 O12) based one- dimensional photonic crystals are investigated and demonstrated in this work. Magnetic optical switches are fabricated and tested. Waveguide formulation for band structure in magneto photonic crystals is developed. We also for the first time demonstrate and test two- dimensional magneto photonic crystals optical. We observe multi-stopbands in two- dimensional photonic waveguide system and study the origin of multi-stopbands. The second part focus on studying photonic metamaterials and planar gradient photonic metamaterial design. We systematically study the effects of varying the geometry of the fishnet unit cell on the refractive index in optical frequency. It is the first time to design and demonstrate the planar gradient structure in the high optical frequency. Optical beam bending using planar gradient photonic metamaterials is observed. The technologies needed for the fabrication of the planar gradient photonic metamaterials are investigated. Beam steering devices, shifter, gradient optical lenses and etc. can be derived from this design.
Resumo:
Ensuring water is safe at source and point-of-use is important in areas of the world where drinking water is collected from communal supplies. This report describes a study in rural Mali to determine the appropriateness of assumptions common among development organizations that drinking water will remain safe at point-of-use if collected from a safe (improved) source. Water was collected from ten sources (borehole wells with hand pumps, and hand-dug wells) and forty-five households using water from each source type. Water quality was evaluated seasonally (quarterly) for levels of total coliform, E.coli, and turbidity. Microbial testing was done using the 3M Petrifilm™ method. Turbidity testing was done using a turbidity tube. Microbial testing results were analyzed using statistical tests including Kruskal-Wallis, Mann Whitney, and analysis of variance. Results show that water from hand pumps did not contain total coliform or E.coli and had turbidity under 5 NTUs, whereas water from dug wells had high levels of bacteria and turbidity. However water at point-of-use (household) from hand pumps showed microbial contamination - at times being indistinguishable from households using dug wells - indicating a decline in water quality from source to point-of-use. Chemical treatment at point-of-use is suggested as an appropriate solution to eliminating any post-source contamination. Additionally, it is recommended that future work be done to modify existing water development strategies to consider water quality at point-of-use.
Resumo:
Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.
Resumo:
A non-hierarchical K-means algorithm is used to cluster 47 years (1960–2006) of 10-day HYSPLIT backward trajectories to the Pico Mountain (PM) observatory on a seasonal basis. The resulting cluster centers identify the major transport pathways and collectively comprise a long-term climatology of transport to the observatory. The transport climatology improves our ability to interpret the observations made there and our understanding of pollution source regions to the station and the central North Atlantic region. I determine which pathways dominate transport to the observatory and examine the impacts of these transport patterns on the O3, NOy, NOx, and CO measurements made there during 2001–2006. Transport from the U.S., Canada, and the Atlantic most frequently reaches the station, but Europe, east Africa, and the Pacific can also contribute significantly depending on the season. Transport from Canada was correlated with the North Atlantic Oscillation (NAO) in spring and winter, and transport from the Pacific was uncorrelated with the NAO. The highest CO and O3 are observed during spring. Summer is also characterized by high CO and O3 and the highest NOy and NOx of any season. Previous studies at the station attributed the summer time high CO and O3 to transport of boreal wildfire emissions (for 2002–2004), and boreal fires continued to affect the station during 2005 and 2006. The particle dispersion model FLEXPART was used to calculate anthropogenic and biomass-burning CO tracer values at the station in an attempt to identify the regions responsible for the high CO and O3 observations during spring and biomass-burning impacts in summer.
Resumo:
Materials are inherently multi-scale in nature consisting of distinct characteristics at various length scales from atoms to bulk material. There are no widely accepted predictive multi-scale modeling techniques that span from atomic level to bulk relating the effects of the structure at the nanometer (10-9 meter) on macro-scale properties. Traditional engineering deals with treating matter as continuous with no internal structure. In contrast to engineers, physicists have dealt with matter in its discrete structure at small length scales to understand fundamental behavior of materials. Multiscale modeling is of great scientific and technical importance as it can aid in designing novel materials that will enable us to tailor properties specific to an application like multi-functional materials. Polymer nanocomposite materials have the potential to provide significant increases in mechanical properties relative to current polymers used for structural applications. The nanoscale reinforcements have the potential to increase the effective interface between the reinforcement and the matrix by orders of magnitude for a given reinforcement volume fraction as relative to traditional micro- or macro-scale reinforcements. To facilitate the development of polymer nanocomposite materials, constitutive relationships must be established that predict the bulk mechanical properties of the materials as a function of the molecular structure. A computational hierarchical multiscale modeling technique is developed to study the bulk-level constitutive behavior of polymeric materials as a function of its molecular chemistry. Various parameters and modeling techniques from computational chemistry to continuum mechanics are utilized for the current modeling method. The cause and effect relationship of the parameters are studied to establish an efficient modeling framework. The proposed methodology is applied to three different polymers and validated using experimental data available in literature.
Resumo:
This research was conducted in August of 2011 in the villages of Kigisu and Rubona in rural Uganda while the author was serving as a community health volunteer with the U.S. Peace Corps. The study used the contingent valuation method (CVM) to estimate the populations’ willingness to pay (WTP) for the operation and maintenance of an improved water source. The survey was administered to 122 households out of 400 in the community, gathering demographic information, health and water behaviors, and using an iterative bidding process to estimate WTP. Households indicated a mean WTP of 286 Ugandan Shillings (UGX) per 20 liters for a public tap and 202 UGX per 20 liters from a private tap. The data were also analyzed using an ordered probit model. It was determined that the number of children in the home, and the distance from the existing source were the primary variables influencing households’ WTP.