6 resultados para likelihood function

em Collection Of Biostatistics Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we study panel count data with informative observation times. We assume nonparametric and semiparametric proportional rate models for the underlying recurrent event process, where the form of the baseline rate function is left unspecified and a subject-specific frailty variable inflates or deflates the rate function multiplicatively. The proposed models allow the recurrent event processes and observation times to be correlated through their connections with the unobserved frailty; moreover, the distributions of both the frailty variable and observation times are considered as nuisance parameters. The baseline rate function and the regression parameters are estimated by maximizing a conditional likelihood function of observed event counts and solving estimation equations. Large sample properties of the proposed estimators are studied. Numerical studies demonstrate that the proposed estimation procedures perform well for moderate sample sizes. An application to a bladder tumor study is presented to illustrate the use of the proposed methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences.