2 resultados para delayed multiple baseline across participants
em Collection Of Biostatistics Research Archive
Resumo:
An optimal multiple testing procedure is identified for linear hypotheses under the general linear model, maximizing the expected number of false null hypotheses rejected at any significance level. The optimal procedure depends on the unknown data-generating distribution, but can be consistently estimated. Drawing information together across many hypotheses, the estimated optimal procedure provides an empirical alternative hypothesis by adapting to underlying patterns of departure from the null. Proposed multiple testing procedures based on the empirical alternative are evaluated through simulations and an application to gene expression microarray data. Compared to a standard multiple testing procedure, it is not unusual for use of an empirical alternative hypothesis to increase by 50% or more the number of true positives identified at a given significance level.
Resumo:
Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.