3 resultados para Spectral method with domain decomposition

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of the number of mixture components (k) is an unsolved problem. Available methods for estimation of k include bootstrapping the likelihood ratio test statistics and optimizing a variety of validity functionals such as AIC, BIC/MDL, and ICOMP. We investigate the minimization of distance between fitted mixture model and the true density as a method for estimating k. The distances considered are Kullback-Leibler (KL) and “L sub 2”. We estimate these distances using cross validation. A reliable estimate of k is obtained by voting of B estimates of k corresponding to B cross validation estimates of distance. This estimation methods with KL distance is very similar to Monte Carlo cross validated likelihood methods discussed by Smyth (2000). With focus on univariate normal mixtures, we present simulation studies that compare the cross validated distance method with AIC, BIC/MDL, and ICOMP. We also apply the cross validation estimate of distance approach along with AIC, BIC/MDL and ICOMP approach, to data from an osteoporosis drug trial in order to find groups that differentially respond to treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.