1 resultado para Highly ordered structure
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (31)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Aston University Research Archive (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (186)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Brock University, Canada (1)
- CentAUR: Central Archive University of Reading - UK (52)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Diposit Digital de la UB - Universidade de Barcelona (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (72)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (31)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Scielo Saúde Pública - SP (8)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (8)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (3)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (28)
- Université de Montréal, Canada (8)
- University of Queensland eSpace - Australia (199)
- University of Washington (2)
Resumo:
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.