9 resultados para Genome wide mapping
em Collection Of Biostatistics Research Archive
Resumo:
High-throughput SNP arrays provide estimates of genotypes for up to one million loci, often used in genome-wide association studies. While these estimates are typically very accurate, genotyping errors do occur, which can influence in particular the most extreme test statistics and p-values. Estimates for the genotype uncertainties are also available, although typically ignored. In this manuscript, we develop a framework to incorporate these genotype uncertainties in case-control studies for any genetic model. We verify that using the assumption of a “local alternative” in the score test is very reasonable for effect sizes typically seen in SNP association studies, and show that the power of the score test is simply a function of the correlation of the genotype probabilities with the true genotypes. We demonstrate that the power to detect a true association can be substantially increased for difficult to call genotypes, resulting in improved inference in association studies.
Resumo:
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.
Resumo:
Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Mircorarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs)simultaneously. The starting point for the statistical analyses used by GWAS, to determine association between loci and disease, are genotype calls (AA, AB, or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays, and different sample batches has substantial inuence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability, GWAS run the risk of adversely affecting the quality of reported findings. In this paper we present solutions based on a multi-level mixed model. Software implementation of the method described in this paper is available as free and open source code in the crlmm R/BioConductor.
Resumo:
Submicroscopic changes in chromosomal DNA copy number dosage are common and have been implicated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that permits the detection of segmental changes in DNA copy number that span thousands of basepairs across the genome. Genome-wide association studies (GWAS) may simultaneously screen for copy number-phenotype and SNP-phenotype associations as part of the analytic strategy. However, genome-wide array analyses are particularly susceptible to batch effects as the logistics of preparing DNA and processing thousands of arrays often involves multiple laboratories and technicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for batch effects can lead to incorrect inference and requires inefficient post-hoc quality control procedures that exclude regions that are associated with batch. Our work extends previous model-based approaches for copy number estimation by explicitly modeling batch effects and using shrinkage to improve locus-specific estimates of copy number uncertainty. Key features of this approach include the use of diallelic genotype calls from experimental data to estimate batch- and locus-specific parameters of background and signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the observed variation in quantile-normalized intensities, while the latter illustrates the robustness of our approach to datasets where as many as 25% of the samples have altered copy number. Locus-specific estimates of copy number can be plotted on the copy-number scale to investigate mosaicism and guide the choice of appropriate downstream approaches for smoothing the copy number as a function of physical position. The software is open source and implemented in the R package CRLMM available at Bioconductor (http:www.bioconductor.org).
Resumo:
Simulation-based assessment is a popular and frequently necessary approach to evaluation of statistical procedures. Sometimes overlooked is the ability to take advantage of underlying mathematical relations and we focus on this aspect. We show how to take advantage of large-sample theory when conducting a simulation using the analysis of genomic data as a motivating example. The approach uses convergence results to provide an approximation to smaller-sample results, results that are available only by simulation. We consider evaluating and comparing a variety of ranking-based methods for identifying the most highly associated SNPs in a genome-wide association study, derive integral equation representations of the pre-posterior distribution of percentiles produced by three ranking methods, and provide examples comparing performance. These results are of interest in their own right and set the framework for a more extensive set of comparisons.
Resumo:
The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade’s worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show RNA-seq data demonstrates unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find GC-content has a strong sample specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here we describe statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization (CQN) algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content, and quantile normalization to correct for global distortions.
Resumo:
Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.