1 resultado para Estimated parameter
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Aquatic Commons (33)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (2)
- Brock University, Canada (3)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (101)
- CentAUR: Central Archive University of Reading - UK (75)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (75)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (9)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (2)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (119)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (72)
- Queensland University of Technology - ePrints Archive (97)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (166)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (15)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (12)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.